0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Формула нахождения площади сечения

Расчет площади поперечного сечения круга

В инженерной и строительной практике нередко встречаются задачи по расчёту площади поперечного сечения. Если фигуру разрезать по линии, которая перпендикулярна продольной оси предмета, то полученный торец и будет поперечным сечением. Круг — один из наиболее часто встречающихся видов подобного рассечения. Такой срез присущ цилиндру, шару, конусу, тору, эллипсоиду.

Определение величины

Площадь — это величина, характеризующая размер геометрической фигуры. Её определение — одна из древнейших практических задач. Древние греки умели находить площадь многоугольников: так, каменщикам, чтобы узнать размер стены, приходилось умножать её длину на высоту.

По прошествии долгих лет трудом многих мыслителей был выработан математический аппарат для расчета этой величины практически для любой фигуры.

На Руси существовали особые единицы измерения: копна, соха, короб, верёвка, десятина, четь и другие, так или иначе связанные с пахотой. Две последних получили наибольшее распространение. Однако от древнерусских землемеров нам досталось только само слово — «площадь».

С развитием науки и техники появилось не только множество формул для расчёта площадей любых геометрических фигур, но и приборы, которые делают это за человека. Такие приборы называют планиметрами.

Область применения

Круг — одна из фундаментальных фигур, которые окружают человека повсюду. Трубы, колеса, лампы, конфорки у плиты — всё это имеет форму круга или поперечное сечение в виде круга. Расчёт площади такого сечения может понадобиться в следующих ситуациях:

  1. Определение объемов емкостей.
  2. Решение задач по сопротивлению материалов и электротехнике.
  3. Расчет количества материалов при проектировании, строительстве и ремонте.
  4. Ведение поливного земледелия.

Стоит обратить внимание на разницу между кругом и окружностью. Окружность — это замкнутая кривая, все точки которой равно удалены от центра, в то время как круг — это часть плоскости (геометрическая фигура), ограниченная окружностью.

Круг имеет ряд характеристик:

  • радиус (r/R) — отрезок, соединяющий центр фигуры с его границей;
  • диаметр (d/D) — отрезок, который соединяет две точки границы круга и проходит через его центр;
  • длина окружности (C/c/L/l).

Теорема гласит: площадь круга (S) равна произведению половины длины окружности и его радиуса. Длина окружности С находится в прямой зависимости от радиуса R с коэффициентом π («пи» = 3,14).

Способы расчета

Чтобы получить круглое поперечное сечение, необходимо разрезать объёмную фигуру перпендикулярно оси вращения. В случае с цилиндром площади всех поперечных сечений будут равны между собой — как, например, кружки колбасы, нарезанные поперек батона, одинаковы.

Шар, по сути, представляет собой напластование блинчиков-кругов различного диаметра от точечного до заданного и обратно до точки. Чтобы найти S какого-либо из блинчиков, необходимо определить его радиус. Принцип его расчёта сводится к решению теоремы Пифагора, где гипотенузой выступает радиус шара, а искомый радиус становится одним из катетов.

При расчёте площади сечений конуса необходимо найти радиус или диаметр каждого из кругов, учитывая, что в продольном разрезе конус — это равнобедренный треугольник.

Цилиндр, конус и шар — базовые объемные фигуры. Однако существуют более сложные фигуры, например, тор. Тор, или тороид, при первом приближении являет собой не что иное, как бублик или баранку. Разломив его пополам, на торцах можно увидеть два одинаковых круга. Площадь такого поперечного сечения можно получить, удвоив имеющуюся (на рисунке серая область справа). Если взять нож и рассечь баранку вдоль, на срезе получится кольцо. В случае с такой фигурой необходимо найти площадь круга по внешней окружности и вычесть из нее «дырку от бублика» (показано серым на рисунке слева).

Читать еще:  Выборка четверти циркулярной пилой

Площадь круглого поперечного сечения рассчитывается исходя из имеющихся характеристик. Она сводится к трем основным формулам. Их можно представить таким образом:

  1. Самая популярная, легкая в применении и часто используемая формула. Чтобы узнать площадь фигуры, если известен её радиус, нужно возвести это значение в квадрат и умножить на число π. Для бытовых расчетов достаточно двух знаков после запятой, то есть π = 3,14.
  2. Иногда оперируют диаметром, а не радиусом круга. В этом случае к вычислениям добавляется одна операция: диаметр умножают сам на себя, затем на число π, а произведение делят на 4.
  3. Если известна длина окружности С и ее радиус R и нужно выяснить площадь круга, ограниченного этой окружностью, не понадобится даже π. Используют следующую формулу: значение С делят пополам и умножают на R. Полученное чисто и будет искомой величиной.

Способов определения того, чему равна площадь круга, достаточно много. Чаще всего, если возникает подобная задача, на ум приходит знакомая еще со школьной скамьи формула «эс равно пи эр квадрат».

Как рассчитать площадь сечения трубы – простые и проверенные способы

Произвести расчет сечения трубы довольно просто, ведь для этого есть ряд стандартных формул, а также многочисленные калькуляторы и сервисы в интернете, которые могут выполнить ряд простых действий. В данном материале мы расскажем о том, как рассчитать площадь сечения трубы самостоятельно, ведь в некоторых случаях нужно учитывать ряд конструкционных особенностей трубопровода.

Формулы вычислений

При проведении вычислений нужно учитывать, что по существу трубы имеют форму цилиндра. Поэтому для нахождения площади их сечения можно воспользоваться геометрической формулой площади окружности. Зная внешний диаметр трубы и значение толщины его стенок, можно найти показатель внутреннего диаметра, который понадобится для вычислений.

Стандартная формула площади окружности такова:

π – постоянное число, равное 3,14;

R – величина радиуса;

S – площадь сечения трубы, вычисленная для внутреннего диаметра.

Порядок расчета

Поскольку главная задача – это найти площадь проходного сечения трубы, основная формула будет несколько видоизменена.

В результате вычисления производятся так:

D – значение внешнего сечения трубы;

N – толщина стенок.

Примите к сведению, что, чем больше знаков в числе π вы подставите в расчеты, тем точнее они будут.

Приведем числовой пример нахождения поперечного сечения трубы, с наружным диаметром в 1 метр (N). При этом стенки имеют толщину в 10 мм (D). Не вдаваясь в тонкости, примем число π равным 3,14.

Итак, расчеты выглядят следующим образом:

S=π×(D/2-N) 2 =3,14×(1/2-0,01) 2 =0,754 м 2 .

Физические характеристики труб

Стоит знать, что показатели площади поперечного сечения трубы напрямую влияют на скорость транспортировки газообразных и жидких веществ. Поэтому крайне важно заложить в проект трубы с правильным сечением. Кроме того, на выбор диаметра трубы будет влиять еще и рабочее давление в трубопроводе. Читайте также: «Как посчитать площадь трубы – способы и формулы расчета».

Также в процессе проектирования трубопроводов стоит учитывать химические свойства рабочей среды, а также ее температурные показатели. Даже если вы знакомы с формулами, как найти площадь сечения трубы, стоит изучить дополнительный теоретический материал. Так, информация относительно требований к диаметрам трубопроводов под горячее и холодное водоснабжение, отопительные коммуникации или транспортировку газов, содержатся в специальной справочной литературе. Значение имеет также сам материал, из которого произведены трубы.

Выводы

Таким образом, определение площади сечения трубы является очень важным, однако, в процессе проектировки нужно обращать внимание на характеристики и особенности системы, материалы трубных изделий и их прочностные показатели.

Площадь поперечного сечения

При решении заданий сопротивления материалов в расчетные формулы вводят величины, которые определяют формулу и размеры поперечных сечений, они называются геометрическими характеристиками плоских сечений. Первой такой величиной стоит считать площадь сечения. Рассчитать площадь поперечного сечения можно даже ствола дерева, ведь оно по форме похоже на эллипс или круг. Согласно формуле, площадь поперечного сечения круга, возможно, рассчитать достаточно точно по формуле. Площадь сечения круга или шара можно найти по формуле:

Читать еще:  Крючок для вязки проволоки арматуры

S = πR 2

При этом не стоит забывать о том, что расстояние от плоскости до центра фигуры совпадет с плоскостью, тогда плоскость поперечного сечения шара будет равняться нулю, так как касание им плоскости происходит лишь в одной точке.

Рассмотрим на примере параллелограмма. Прежде всего, для того чтобы найти площадь поперечного сечения, необходимо знать значения высоты и снования параллелограмма. Даже если нам известна только ширина основания и его длина через эти значения возможно найти диагональ, используя теорему Пифагора: квадрат гипотенузы прямоугольного треугольника равняется сумме квадратов катетов. Формула выглядит как:

a 2 + b 2 = c 2

Из нее можно вывести такую формулу:

c = S*q*r*t*(a 2 + b 2 )

Когда у нас известно значение диагонали параллелограмма, то его можно подставить в формулу:

S – площадь поперечного сечения, h это значений высоты параллелограмма. Результат, который получится после исчислений, будет означать площадь поперечного сечения. Такая формула:

используется в тех случаях, когда сечение идет параллельно двум основаниям.

При вычислении площади поперечного сечения цилиндра, которое проходит вдоль его оснований, если одна из сторон данного прямоугольника тождественна радиусу основания, а другая из сторон – высоте цилиндра используется такая формула:

где h – высота цилиндра R – величина радиуса окружности. Если же сечение не проходит сквозь ось цилиндра и одновременно параллельно его основаниям, то это означает, что сторона данного треугольника не равняется диаметру окружности основания.

Для решения этой проблемы необходимо узнать значение неизвестной стороны предварительно нарисовав окружность у основания цилиндра. Расчет производится также по формуле выведенной из теоремы Пифагора. Затем подставляется формула:

где 2а – значение хорды, расчета площади поперечного сечения.

Вычисление площади поперечного сечения

С необходимостью определения площади поперечного сечения проводника сталкивается каждый, кто хоть раз в жизни занимался ремонтом кабельной проводки в квартире, на даче, в гараже или офисе. Нехватка сечения может привести к пожару, так как провод будет сильно нагреваться. Если же сечение, наоборот, подобрано со значительным запасом, то стоимость проводки станет необоснованно высокой. В этой статье рассказывается, о различных методиках определения площади поперечного сечения проводника для круглых, одножильных, многожильных проводов и кабелей.

Что такое площадь поперечного сеченья

Если провод разрезать строго перпендикулярно его длине, чтобы металлические сердечники имели форму правильного круга, то несложно будет измерить диаметр этих жил и определить их площадь с использованием стандартной формулы.

Важно! До недавнего времени опытные электрики могли определить этот параметр на глаз, но сегодня даже они вынуждены измерять провода, и проводить вычисления. Во времена Советского Союза все провода и кабели выпускались по единому ГОСТу, который и нормировал стандартные сечения. Если это 2.5 мм2, то электрик сразу мог отличить его от близких параметров 2 мм2 или 3 мм2. Сегодня производством кабельной продукции занимаются различные компании, которые могут сознательно уменьшать сечение провода и экономить на этом деньги. Вместо заявленных 2.5 мм2 в продажу может поступить провод 2,2 мм2, а это может иметь серьезные последствия и закончиться выгоранием проводки.

Чему равна площадь

Чему равна площадь поперечного сечения проводника – главный вопрос монтажника. Данный показатель является величиной, которая зависит от формы перпендикулярного среза геометрического тела. Проще всего определить площадь квадрата или прямоугольника, для чего достаточно перемножить между собой длину на ширину. Еще в Древней Греции научились рассчитывать площадь практически любой фигуры. Как правило, большинство проводов имеют круглую форму сечения, которую вычислить несложно по формуле или воспользовавшись справочной таблицей. Для этого нужно знать только диаметр или радиус жилы проводника.

Обратите внимание! Существуют кабели большого сечения, в составе которых расположены секторные провода. Но в конечном итоге, сердечники таких изделий рассчитываются исходя из общего приведённого диаметра всех металлических элементов в пучке. Для определения площади сечения каждой жилы необходимо общий показатель разделить на их количество в кабеле.

Читать еще:  Что должен знать начинающий электрик

Чем измерять площадь

Для правильного измерения площади поперечного сечения важно сделать ровный перпендикулярный срез и измерить диаметр металла при помощи высокоточных приборов. В случае с многожильными проводами необходимо выполнить следующие шаги:

  • Для точных расчетов нужна одиночная проволока. Из пучка проводов выделяют одну жилку и вычисляют площадь ее сечения.
  • Пересчитывают количество жил в проводе.
  • Перемножают площадь сечения жилки на их количество.

Полученный результат и будет искомой площадью многожильного проводника.

Дополнительная информация: Для вычисления площади сечения проводника необходимо, в первую очередь, измерить его диаметр, и сделать это лучше всего микрометром, штангенциркулем или, в крайнем случае, высокоточной инженерной линейкой. Так как микрометр – редкость в наборе инструментов электрика, то этот способ мы упустим и остановимся на штангенциркуле и линейке.

Штангенциркуль

Штангенциркуль — высокоточный измерительный инструмент, при помощи которого можно определить линейные размеры любого предмета, диаметры круглых изделий, а также глубину сквозных и глухих отверстий и выемок. Такой инструмент должен быть у каждого домашнего мастера, стоит он не дорого и при правильном обращении может прослужить не одно десятилетие.

Штангенциркули подразделяются на следующие виды:

  • Нониусные — имеют классическую конструкцию и высокоточную измерительную шкалу, которая позволяет измерять предметы с точностью до 0.1 – 0.05 мм.
  • Со стрелочным отображением результатов измерений — очень удобный для снятия точных показаний инструмент, но его главным недостатком является повышенная хрупкость.
  • С электронной индикацией результатов — относительно новая разработка, предназначенная для получения максимальной точности и удобного снятия показаний измерений.

Рассмотрим самый распространенный вид штангенциркуля — нониусный. Из таких инструментов наибольшее распространение получили два вида:

  • ШЦ-I с точностью измерений 0,1 мм, такой инструмент есть практически у каждого слесаря.
  • ШЦ-II с точностью измерений 0,05 мм, этот штангенциркуль предпочтительнее, так как в результате работы он выдаёт меньшую погрешность.

Для правильного измерения диаметра достаточно оголить сердечник кабеля путём снятия изоляция, после чего прижать раздвижные губки инструмента к его поверхности. Риска на подвижной части штангенциркуля совпадёт с показателем на шкале, который и будет являться диаметром.

Карандаш + линейка

Если под рукой нет точных измерительных инструментов, а определить диаметр провода необходимо в настоящий момент, можно воспользоваться старым проверенным способом. Картинка 5. Метод карандаша.

Для данного способа понадобятся круглый карандаш и линейка. Суть метода состоит в следующем алгоритме:

  • Прежде всего необходимо отрезать кусок провода и очистить его от изоляции.
  • Далее проволока из металлического сердечника плотно наматывается на карандаш, причём, минимальное количество витков должно быть не меньше 15. Здесь все зависит от толщины провода, и чем он тоньше, тем больше витков необходимо намотать.
  • Проводятся вычисления по формуле, приведённой на картинке 6.

Обратите внимание! Для получения точного результата следует наматывать провод на карандаш как можно плотнее. Для этого перед наматыванием его необходимо тщательно выровнять в местах перегибов и образования петель.

Как правильно найти площадь поперечного сечения (с помощью формулы)

Как найти площадь поперечного сечения проводника подскажет формула, известная из школьного курса геометрии – пr2. Когда известен диаметр провода, можно приступать к вычислению площади сечения. Сделать это несложно с помощью калькулятора по формуле, указанной на картинке 7.

Таблица диаметров и сечения проводов

Формула для расчёта диаметра достаточно проста и выдаёт стандартные значения для конкретного диаметра. Поэтому часто можно увидеть в продаже соответствующие таблицы площадей круга.

Таким способом можно пользоваться в том случае, если под рукой оказался стандартный проводник, указанный в ГОСТ. Например — при диаметре сердечника 2.8 мм площадь его сечения составит 6 мм2.

Прочитав эту статью, любой человек сможет самостоятельно рассчитать площадь поперечного сечения провода или кабеля. Это пригодится при замене старой проводки или при монтаже новой кабельной линии. Главное условия подбора – повышенная точность, так как идеального соотношения качества, простоты установки, безопасности и оптимальной цены можно добиться только после проведения кропотливых замеров.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector