10 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Формулы электротехники для начинающих

Основные законы электротехники

ЗАКОН ОМА (по имени немецкого физика Г. Ома (1787-1854)) – единица электрического сопротивления. Обозначение Ом. Ом – сопротивление проводника, между концами которого при силе тока 1 А возникает напряжение 1 В. Определяющее уравнение для электрического сопротивления R= U / I.

Закон Ома является основным законом электротехники, без которого нельзя обойтись при расчете электрических цепей. Взаимосвязь между падением напряжения на проводнике, его сопротивлением и силой тока легко запоминается в виде треугольника, в вершинах которого расположены символы U, I, R.

ЗАКОН ДЖОУЛЯ-ЛЕНЦА (по имени английского физика Дж.П.Джоуля и русского физика Э.Х.Ленца) – закон, характеризующий тепловое действие электрического тока.

Согласно закону, количество теплоты Q (в джоулях), выделяющейся в проводнике при прохождении по нему постоянного электрического тока, зависит от силы тока I (в амперах), сопротивления проводника R (в омах) и времени его прохождения t (в секундах): Q = I 2 Rt.

Преобразование электрической энергии в тепловую широко используется в электрических печах и различных электронагревательных приборах. Тот же эффект в электрических машинах и аппаратах приводит к непроизвольным затратам энергии (потере энергии и снижении КПД). Тепло, вызывая нагрев этих устройств, ограничивает их нагрузку. При перегрузке повышение температуры может вызвать повреждение изоляции или сокращение срока службы установки.

ЗАКОН КИРХГОФА (по имени немецкого физика Г.Р.Кирхгофа (1824-1887)) – два основных закона электрических цепей. Первый закон устанавливает связь между суммой токов, направленных к узлу соединения (положительные), и суммой токов, направленных от узла (отрицательные).

Алгебраическая сумма сил токов In, сходящихся в любой точке разветвления проводников (узле), равна нулю, т.е. SUMM(In)= 0. Например, для узла A можно записать: I1 + I2 = I3 + I4 или I1 + I2 – I3 – I4 = 0.

Второй закон устанавливает связь между суммой электродвижущих сил и суммой падений напряжений на сопротивлениях замкнутого контура электрической цепи. Токи, совпадающие с произвольно выбранным направлением обхода контура, считаются положительными, а не совпадающие – отрицательными.

Алгебраическая сумма мгновенных значений ЭДС всех источников напряжения в любом контуре электрической цепи равна алгебраической сумме мгновенных значений падений напряжений на всех сопротивлениях того же контура SUMM(En)=SUMM(InRn). Переставив SUMM(InRn) в левую часть уравнения, получим SUMM(En) – SUMM(InRn) = 0. Алгебраическая сумма мгновенных значений напряжений на всех элементах замкнутого контура электрической цепи равна нулю.

ЗАКОН ПОЛНОГО ТОКА один из основных законов электромагнитного поля. Устанавливает взаимосвязь между магнитной силой и величиной тока, проходящего через поверхность. Под полным током понимается алгебраическая сумма токов, пронизывающих поверхность, ограниченную замкнутым контуром.

Намагничивающая сила вдоль контура равна полному току, проходящему сквозь поверхность, ограниченную этим контуром. В общем случае напряженность поля на различных участках магнитной линии может иметь разные значения, и тогда намагничивающая сила будет равна сумме намагничивающих сил каждой линии.

ЗАКОН ЛЕНЦА — основное правило, охватывающее все случаи электромагнитной индукции и позволяющее установить направление возникающей э.д.с. индукции.

Согласно закону Ленца это направление во всех случаях таково, что ток, созданный возникшей э.д.с., препятствует тем изменениям, которые вызвали появление э.д.с. индукции. Этот закон является качественной формулировкой закона сохранения энергии в применении к электромагнитной индукции.

ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ , закон Фарадея – закон, устанавливающий взаимосвязь между магнитными и электрическими явлениями. ЭДС электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Величина ЭДС поля зависит от скорости изменения магнитного потока.

ЗАКОНЫ ФАРАДЕЯ (по имени английского физика М.Фарадея (1791-1867)) – основные законы электролиза.

Устанавливают взаимосвязь между количеством электричества, проходящего через электропроводящий раствор (электролит), и количеством вещества, выделяющегося на электродах.

При пропускании через электролит постоянного тока I в течение секунды q = It, m = kIt.

Второй закон ФАРАДЕЯ: электрохимические эквиваленты элементов прямо пропорциональны их химическим эквивалентам.

ПРАВИЛО БУРАВЧИКА — правило, позволяющее определить направление магнитного поля, зависящее от направления электрического тока. При совпадении поступательного движения буравчика с протекающим током направление вращения его рукоятки указывает направление магнитных линий. Или при совпадении направления вращения рукоятки буравчика с направлением тока в контуре поступательное движение буравчика указывает направление магнитных линий, пронизывающих поверхность, ограниченную контуром.

ПРАВИЛО ЛЕВОЙ РУКИ — правило, позволяющее определить направление электромагнитной силы. Если ладонь левой руки расположена так, что вектор магнитной индукции входит в нее (вытянутые четыре пальца совпадают с направлением тока), то отогнутый под прямым углом большой палец левой руки показывает направление электромагнитной силы.

Правило левой руки

ПРАВИЛО ПРАВОЙ РУКИ — правило, позволяющее определить направление наведенной эдс электромагнитной индукции. Ладонь правой руки располагают так, чтобы магнитные линии входили в нее. Отогнутый под прямым углом большой палец совмещают с направлением движения проводника. Вытянутые четыре пальца укажут направление индуктированной эдс.

Читать еще:  Значение перехода от меди к бронзе

Расчетные формулы по электротехнике

8. Сопротивление цепи из n параллельных резисторов

9. Общая емкость конденсаторов

при последовательном соединении:

Приложение 13

Расчёт сложных электрических цепей

В сложных электрических цепях может содержаться несколько замкнутых контуров с любым размещением в них источников энергии и потребителей. Поэтому такие сложные цепи нельзя свести к сочетанию последовательных и параллельных соединений.

Используя законы Ома и Кирхгофа, можно найти распределение токов и напряжений на всех участках любой сложной цепи.

Одним из методов расчёта сложных электрических цепей является метод наложение токов, сущность которого заключается в том, что ток в какой-либо ветви представляет собой алгебраическую сумму токов, создаваемых в ней каждой из ЭДС цепи в отдельности. На рис. изображена цепь, содержащая три источника с ЭДС E1, E2, E3и четыре последовательно соединенных резистора R1, R2, R3, R4. Если пренебречь внутренним сопротивлением источников энергии, то общее сопротивление цепи R=R1+R2+R3+R4. Допустим сначала, что ЭДС первого источника E1 0, а второго и третьего E2 = 0 и E3 = 0. Затем положим E2 ≠ 0, а E1 = 0 и E3 = 0. И наконец, полагаем E3≠ 0, а E1 = 0 и E2 = 0. В первом случаи ток в цепи, совпадающий по направлению с ЭДС E1, равен I1 = E1/R; во втором случаи ток в цепи, совпадающий по направлению с ЭДС E2, равен I2 = E2/R; в третьем случаи ток равен I3 = E3/Rи совпадает по направлению с ЭДС E3. Так как ЭДС E1 и E3 совпадает по направлению в контуре, то и токи I1 и I3 также совпадают, а ток I2 имеет противоположное направление, так как ЭДС E2 направлена встречно по отношению к ЭДС E1 и E3. Следовательно, ток в цеп равен

Электрическая цепь с тремя источниками энергии

Направление на любом участке цепи, например между точками а и б,равно Uаб = IR4.

При расчёте сложных цепей для определения токов во всех ветвях цепи необходимо знать сопротивления ветвей, а также значение и направление всех ЭДС.

Перед составлением уравнений по законам Кирхгофа следует произвольно задаться направлениями токов в ветвях, показав их на схеме стрелками. Если действительное направления тока в какой-либо ветви противоположно выбранному, то после решения уравнений этот ток получится со знаком « — ». Число необходимых уравнений равно числу неизвестных токов, причём число уравнений, составляемых по первому закону Кирхгофа, должно быть на единицу меньше числа узлов цепи; остальные уравнения составляются по второму закону Кирхгофа, причем следует выбрать наиболее простые контуры и так, чтобы каждый из них содержал хотя бы одну ветвь, не входившую в ранее составленные уравнения.

Расчет сложной цепи с применением уравнений по законам Кирхгофа рассмотрим на примере двух параллельно включенных источников, замкнутых на сопротивление. Пусть ЭДС источников E1 = E2 =120B, их внутренние сопротивления R1 = 3 Ом и R2 = 6 Ом, сопротивление нагрузки R = 18 Ом.

Так как число неизвестных токов 3, то необходимо составить три уравнения. При двух узловых точках необходимо одно узловое уравнение по первому закону Кирхгофа: I = I1 + I2. Второе уравнение запишем при обходе контура, состоящего из первого источника и сопротивление нагрузки: E1 = I1R1 + IR. Аналогично запишем третье уравнение: E2 = I2R2 + IR. Подставляя числовые значения, получим 120 В = 3I1 + 18I и 120 В = 6I2 + 18I. ТаккакE1E2 = I1R1I2R2 = 3I1 – 6I2 = 0, тоI1 = 2I2иI = 3I2. Подставляя эти значения в выражение для ЭДС E1, получим 120 =

= 2I2 ×3 + 18 × 3I2 = 60I2, откуда I2 = 120 / 60 = 2A, I1 = 2I2 = 4A, I = I1++I2 = 6A.

В сложных электрических цепях, имеющих две узловые точки а и б и состоящих из нескольких параллельно соединенных источников энергии, работающих на общий приемник, удобно использовать метод узловых напряжений. Обозначив потенциалы в узловых точках φа – φб, напряжение между этими точками U можно выразить разностью этих потенциалов, т.е.

а б

Схема к расчету сложно электрической цепи:

а – по методу узловых напряжений;

б – по методу контурных токов

Приняв за положительное направление ЭДС и токов в ветвях от узла, а к узлу б для каждой из ветвей, можно записать равенства: I1 = ( φа – φб – E1)/

/ R1 = ( UE1)g1; I2 = ( φа – φб – E2) / R2 = ( UE2)g2; I3 = ( φа – φб – E3) / / R3 = ( UE3)g3; I = ( φа – φб ) / R = Ug.

На основании первого закона Кирхгофа для узловой точки имеем I1 + I2 + + I3 +I = 0. Подставим в эту сумму значения токов, найдем

т.е. узловое напряжение равно алгебраической сумме произведений ЭДС и проводимостей всех параллельных ветвей, деленной на сумму проводимостей всех ветвей. Вычислив по этой формуле узловое напряжение и воспользовавшись выражениями для оков в ветвях, легко определить эти токи.

Для определения токов в сложных цепях, содержащих несколько узловых точек и ЭДС, применяют метод контурных токов. Который дает возможность сократить число уравнений, подлежащих решению. Предполагают, что в ветвях, входящих в состав двух смежных контуров, протекают два контурных тока, первый из которых представляет собой ток одного из смежных контуров, а второй – другого контура. Действительный ток в рассматриваемом участке цепи определяется суммой или разностью этих двух токов в зависимости от взаимного относительного направления.

Читать еще:  Шайбы для поликарбоната своими руками

При использовании метода контурных токов составляют уравнения, исходя из суммы сопротивлений, входящих в состав данного контура, и суммы сопротивлений, входящих в состав ветви, общей для смежных контуров. Первую сумму условно обозначают двойным индексом, например R11, R22 и т.д., а вторую – индексом, содержащим номера контуров, для которых данный участок цепи является общим, например R12, R13 и т.д.

Если контур содержит несколько источников с ЭДС E1, E2, E3 и т.д., то на основании второго закона Кирхгофа для этого контура можно записать следующее уравнение: E1 ± E2 ± E3 + … = I1R11 + I2R12 + I3R13 +… . В этом уравнении знак «+» или « — » берется в зависимости от взаимного относительного направления ЭДС и токов в контуре ( при одинаковом направлении — «+», в противоположном — « — » ). Аналогичные уравнения могут быть записаны для всех контуров, входящих в сложную электрическую цепь. Таким образом, алгебраическая сумма ЭДС каждого контура равна алгебраической сумме произведения тока в данном контуре на сумму сопротивлений всех звеньев, образующих его, и контурных токов всех контуров, смежных с данным контуром, на сопротивления общих звеньев.

На рис. б изображена сложная электрическая цепь, содержащая три контура. В цепи два источника с ЭДС E1= 12 B, E2 = 8 B и внутренними сопротивлениями R01 = 4 Ом, R02 = 3 Ом и пять сопротивлений

R1 = 20 Ом, R2 = 29 Ом, R3 = 40 Ом, R4 = 8 Ом, R5 = 16 Ом.

Находим сопротивления: R11 = R1 + R01 + R13 = 20 + 4 + 8 = 32 Ом;

R22 = R2 + R02 + R23 = 29 + 3 + 16 = 48Ом; R33 = R3 + R31 + R32 =

= 40 + 8 + 16 = 64 Ом; R13 = R31 = 8 Ом; R23 = R32 = 16 Ом.

На основании второго закона Кирхгофа составляем уравнения:

для контура 1:

E1 = I1R11I3R13; 12 = 32I1 – 8I3;

для контура 2:

E2 = I2R22I3R23; 8 = 48I2 – 16I3;

для контура 3:

E3 = I3R33I3R32; 0 = 64I3 – 16I2 – 8I.

Решаяэтиуравнения, находим: I1 = 0,4A; I2 = 0,2A; I3 = 0,1A; I4 = I1 – — I3 = 0,3A; I5 = I2I3 = 0,1A.

Основные электрические законы

В предыдущей статье мы познакомились с основными электрическими понятиями, такими как электрический ток, напряжение, сопротивление и мощность. Настал черед основных электрических законов, так сказать, базиса, без знания и понимания которых невозможно изучение и понимание электронных схем и устройств.

Закон Ома

Электрический ток, напряжение, сопротивление и мощность, безусловно, между собой связаны. А взаимосвязь между ними описывается, без сомнения, самым главным электрическим законом – законом Ома. В упрощенном виде этот закон называется: закон Ома для участка цепи. И звучит этот закон следующем образом:

«Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи».

Для практического применения формулу закона Ома можно представить в виде вот такого треугольника, который помимо основного представления формулы, поможет определить и остальные величины.

Работает треугольник следующим образом. Чтобы вычислить одну из величин, достаточно закрыть ее пальцем. Например:

В предыдущей статье мы проводили аналогию между электричеством и водой, и выявили взаимосвязь между напряжением, током и сопротивлением. Также хорошей интерпретацией закона Ома может послужить следующий рисунок, наглядно отображающий сущность закона:

На нем мы видим, что человечек «Вольт» (напряжение) проталкивает человечка «Ампера» (ток) через проводник, который стягивает человечек «Ом» (сопротивление). Вот и получается, что чем сильнее сопротивление сжимает проводник, тем тяжелее току через него проходить («сила тока обратно пропорциональна сопротивлению участка цепи» – или чем больше сопротивление, тем хуже приходится току и тем он меньше). Но напряжение не спит и толкает ток изо всех сил (чем выше напряжение, тем больше ток или – «сила тока в участке цепи прямо пропорциональна напряжению»).

Когда фонарик начинает слабо светить, мы говорим – «разрядилась батарейка». Что с ней произошло, что значит разрядилась? А значит это, что напряжение батарейки снизилось и оно больше не в состоянии «помогать» току преодолевать сопротивление цепей фонарика и лампочки. Вот и получается, что чем больше напряжение – тем больше ток.

Последовательное подключение – последовательная цепь

При последовательном подключении потребителей, например обычных лампочек, сила тока в каждом потребителе одинаковая, а вот напряжение будет отличаться. На каждом из потребителей напряжение будет падать (снижаться).

А закон Ома в последовательной цепи будет иметь вид:

При последовательном соединении сопротивления потребителей складываются. Формула для расчета общего сопротивления:

Параллельное подключение – параллельная цепь

При параллельном подключении, к каждому потребителю прикладывается одинаковое напряжение, а вот ток через каждый из потребителей, в случае, если их сопротивление отличается – будет отличаться.

Закон Ома для параллельной цепи, состоящей из трех потребителей, будет иметь вид:

При параллельном соединении общее сопротивление цепи всегда будет меньше значения самого маленького отдельного сопротивления. Или еще говорят, что «сопротивление будет меньше наименьшего».

Общее сопротивление цепи, состоящей из двух потребителей, при параллельном соединении:

Общее сопротивление цепи, состоящей из трех потребителей, при параллельном соединении:

Читать еще:  Как узнать удельный вес в процентах

Для большего числа потребителей расчет производится исходя из того, что при параллельном соединении проводимость (величина обратная сопротивлению) рассчитывается как сумма проводимостей каждого потребителя.

Электрическая мощность

Мощность – это физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Рассчитывается мощность по следующей формуле:

Таким образом зная, напряжение источника и измерив потребляемый ток, мы можем определить мощность потребляемую электроприбором. И наоборот, зная мощность электроприбора и напряжение сети, можем определить величину потребляемого тока. Такие вычисления порой необходимы. Например, для защиты электроприборов используются предохранители или автоматические выключатели. Чтобы правильно подобрать средство защиты нужно знать потребляемый ток. Предохранители, применяемые в бытовой технике, как правило подлежат ремонту и для их восстановления достаточно подобрать и заменить проволоку.

Применив закон Ома, можно рассчитать мощность и по другой формуле:

При расчетах надо учитывать, что часть потребляемой электроэнергии расходуется на нагрев и преобразуется в тепло. При работе греются не только электрообогреватели, но и телевизоры, и компьютеры и другая бытовая техника.

И в завершение, в качестве бонуса, вот такая шпаргалка, которая поможет определить любой из основных электрических параметров, по уже известным.

Формулы ТОЭ

меню сайта для мобильных приложений

ФОРМУЛЫ ТЕОРИИ ОСНОВ ЭЛЕКТРОТЕХНИКИ (ТОЭ)

Данный раздел основных формул ТОЭ предназначен для начинающих, как для студентов высших учебных заведений изучающих курс физики по электротехники, так и просто для интересующихся общей электротехникой /ТОЭ/ с примерами и комментариями автора:

Прежде чем перейти к формулам, обращу Ваше внимание на буквенное обозначение в ТОЭ, в разных учебниках по ТОЭ, мягко говоря, обозначение довольно произвольное, нет единого требования по данному вопросу в электротехнике. Особенно заметна разность обозначения в комплексных числах (как грибы в лесу, как только их не называют в разных местностях). Поэтому определимся сразу с буквенным обозначением :

При расчётах всегда приводить все значения в одну единицу, например если расчеты по мощности в ваттах, соответственно напряжение в вольтах, сопротивление в омах и т.д.

  • А теперь формулы по электротехнике (ТОЭ) часто применяемые для расчетов (дома, на работе), рассмотрим в порядке от простых к очень простым, для студенческого сообщества выложу отдельно сложные и очень сложные, и напишу целую лекцию по ТОЭ.

ФОРМУЛЫ ПОСТОЯННОГО ТОКА

Закон Ома для участка цепи и всей цепи постоянного тока:

Пример для расчета сопротивления проводника (подробнее можете посмотреть, что такое величина удельного сопротивления проводника на стр. понятия и определения):

Мощность в цепи постоянного тока, здесь нет ничего сложного, как и все в постоянном токе, замечу только, что значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, единица мощности (Р) равна -1 кВт = 1000 Вт:

    • На заметку для любознательных,можно например, электрическую мощность пересчитать в механическую и наоборот: 1 кВт*ч = 367000 кгс*м; 1кВт = 102кгс*м/с, т.е. за 1 кВтч. Т.е. можно поднять груз массой 367 кг на высоту 1 км, или 102 кг за 1 сек. на один метр .

ФОРМУЛЫ ПЕРЕМЕННОГО ТОКА

В отличие от постоянного тока, особенностью переменного тока является то, что электрический ток с течением времени изменяется по величине и направлению. Элементы такой электрической цепи влияют на амплитуду тока и на его фазу. Условное обозначение переменного тока на электроприборах ̴ ( англ . alternating current и обозначается латинскими буквами АС):

Электромагнитные процессы, протекающие в электротехнических устройствах, как правило, достаточно сложны, поэтому далее формулы тоэ будут носить более учебный характер, чем практический, иначе говоря для учащихся и просто для любознательных.

Перевод (конвертировать) мощности (Р в Вт), тока (I в А), сопротивления (R в Ом) и напряжения (U в В) можно, как показано ниже на простом примере (см. рис. ниже):

При этом надо учитывать, если у Вас в цепи U 220 В есть электродвигатели, трансформаторы и т.д. (индуктивные или емкостные нагрузки — реактивные элементы), то тогда нужно учитывать cos φ , например:

в цепи U 380 В подставляем ещё √3 (корень из трёх равен — 1,73), например:

для тока: I = P/(√3*U*cos φ), или I = P/(1,73*U*cos φ), для мощности: P = √3*U*I*cos φ.

Продолжение формулы тоэ:

См. также ниже продолжение раздела формулы:

перейти: формулы тоэ 1 краткое описание страницы — электрический ток (I, ампер), электродвижущая сила (ЭДС, E=A/q=Дж/Кл=В, вольт), электрическое напряжение (U, вольт), электрическая энергия и мощность (Eq, Дж, джоуль) и ватт (Р, Вт, ватт)…

перейти: формулы тоэ 2 краткое описание страницы пассивные элементы цепи (резистор, катушка индуктивности и конденсатор), их основные характеристики и параметры…

Автор сайта надеяться, что информация Вам будет полезна, как доступно простая, так и более углублённая в других разделах сайта. Не забывайте просмотреть рекламу от гугл, реклама для Вас бесплатно, а мне развитие сайта, удачи.

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector