7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как посчитать класс точности прибора

Определение класса точности прибора

Класс точности измерительного прибора — это обобщенная характеристика, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойствами, влияющими на точность, значения которых установлены в стандартах на отдельные виды средств измерений. Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполняемых при помощи этих средств.

Для того чтобы заранее оценить погрешность, которую внесет данное средство измерений в результат, пользуются нормированными значениями погрешности. Под ними понимают предельные для данного типа средства измерений погрешности.

Погрешности отдельных измерительных приборов данного типа могут быть различными, иметь отличающиеся друг от друга систематические и случайные составляющие, но в целом погрешность данного измерительного прибора не должна превосходить нормированного значения. Границы основной погрешности и коэффициентов влияния заносят в паспорт каждого измерительного прибора.

Основные способы нормирования допускаемых погрешностей и обозначения классов точности средств измерений установлены ГОСТ.

На шкале измерительного прибора маркируют значение класса точности измерительного прибора в виде числа, указывающего нормированное значение погрешности. Выраженное в процентах, оно может иметь значения 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001 и т. д.

Если обозначаемое на шкале значение класса точности обведено кружком, например 1,5, это означает, что погрешность чувствительности δs = 1,5%. Так нормируют погрешности масштабных преобразователей (делителей напряжения, измерительных шунтов, измерительных трансформаторов тока и напряжения и т. п.).

Это означает, что для данного измерительного прибора погрешность чувствительности δs = dx/x — постоянная величина при любом значении х. Граница относительной погрешности δ(х) постоянна и при любом значении х просто равна значению δs, а абсолютная погрешность результата измерений определяется как dx = δsx

Для таких измерительных приборов всегда указывают границы рабочего диапазона, в которых такая оценка справедлива.

Если на шкале измерительного прибора цифра класса точности не подчеркнута, например 0,5, это означает, что прибор нормируется приведенной погрешностью нуля δо = 0,5 %. У таких приборов для любых значений х граница абсолютной погрешности нуля dx = dо = const, а δо = dо/хн.

При равномерной или степенной шкале измерительного прибора и нулевой отметке на краю шкалы или вне ее за хн принимают верхний предел диапазона измерений. Если нулевая отметка находится посредине шкалы, то хн равно протяженности диапазона измерений, например для миллиамперметра со шкалой от -3 до +3 мА, хн= 3 — (-3)=6 А.

Однако будет грубейшей ошибкой полагать, что амперметр класса точности 0,5 обеспечивает во всем диапазоне измерений погрешность результатов измерений ±0,5 %. Значение погрешности δо увеличивается обратно пропорционально х, то есть относительная погрешность δ(х) равна классу точности измерительного прибора лишь на последней отметке шкалы (при х = хк). При х = 0,1хк она в 10 раз больше класса точности. При приближении х к нулю δ(х) стремится к бесконечности, то есть такими приборами делать измерения в начальной части шкалы недопустимо.

На измерительных приборах с резко неравномерной шкалой (например на омметрах) класс точности указывают в долях от длины шкалы и обозначают как 1,5 с обозначением ниже цифр знака «угол».

Если обозначение класса точности на шкале измерительного прибора дано в виде дроби (например 0,02/0,01), это указывает на то, что приведенная погрешность в конце диапазона измерений δпрк = ±0,02 %, а в нуле диапазона δпрк = -0,01 %. К таким измерительным приборам относятся высокоточные цифровые вольтметры, потенциометры постоянного тока и другие высокоточные приборы.

В этом случае δ(х) = δк + δн (хк/х — 1), где хк — верхний предел измерений (конечное значение шкалы прибора), х — измеряемое значение.

Класс точности

Во время лабораторных измерений требуется знать точность измерительных средств, которые в свою очередь обладают определенными характеристиками и различаются по устройству. Каждое из средств измерения (СИ) имеют определенные неточности, которые делится на основные и дополнительные. Зачастую возникают ситуации, когда нет возможности или просто не требуется производить подробный расчет. Каждому средству измерения присвоен определенный класс точности, зная который, можно выяснить его диапазон отклонений.

Вовремя выяснить ошибки измерительного средства помогут нормированные величины погрешностей. Под этим определением стоит понимать предельные, для измерительного средства показатели. Они могут быть разными по величине и зависеть от разных условий, но пренебрегать ими не стоит ни в коем случае, ведь это может привести к серьезной ошибке в дальнейшем. Нормированные значения должны быть меньше чем покажет прибор. Границы допустимых величин ошибок и необходимые коэффициенты вносятся в паспорт каждого замеряющего размеры устройства. Узнать подробные значения нормирования для любого прибора можно воспользовавшись соответствующим ГОСТом.

Класс точности измерительного прибора

Обобщающая характеристика, которая определяется пределами погрешностей (как основных, так и дополнительных), а также другими влияющими на точные замеры свойствами и показатели которых стандартизированы, называется класс точности измерительного аппарата. Класс точности средств измерений дает информацию о возможной ошибке, но одновременно с этим не является показателем точности данного СИ.

Средство измерения – это такое устройство, которое имеет нормированные метрологические характеристики и позволяет делать замеры определенных величин. По своему назначению они бывают примерные и рабочие. Первые используются для контроля вторых или примерных, имеющих меньший ранг квалификации. Рабочие используются в различных отраслях. К ним относятся измерительные:

  • приборы;
  • преобразователи;
  • установки;
  • системы;
  • принадлежности;
  • меры.

На каждом средстве для измерений имеется шкала, на которой указываются классы точности этих средств измерений. Они указываются в виде чисел и обозначают процент погрешности. Для тех, кто не знает, как определить класс точности, следует знать, что они давно стандартизованы и есть определенный ряд значений. Например, на устройстве может быть одна из следующих цифр: 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001. Если это число находится в круге, то это погрешность чувствительности. Обычно ее указывают для масштабных преобразователей, таких как:

  • делители напряжения;
  • трансформаторы тока и напряжения;
  • шунты.

Обозначение класса точности

Обязательно указывается граница диапазона работы этого прибора, в пределах которой значение класса точности будет верно.

Те измерительные устройства, которые имеют рядом со шкалой цифры: 0,05; 0,1; 0,2; 0,5, именуются как прецизионные. Сфера их применения – это точные и особо точные замеры в лабораторных условиях. Приборы с маркировкой 1,0; 1,5; 2,5 или 4,0 называются технические и исходя из названия применяются в технических устройствах, станках, установках.

Возможен вариант, что на шкале такого аппарата не будет маркировки. В такой ситуации погрешность приведенную принято считать более 4%.

Если значение класса точности устройства не подчеркнуто снизу прямой линией, то это говорит о том, что такой прибор нормируется приведенной погрешностью нуля.

Грузопоршневой манометр, класс точности 0,05

Если шкала отображает положительные и отрицательные величины и отметка нуля находится посередине такой шкалы, то не стоит думать, что погрешность во всем диапазоне будет неизменной. Она будет меняться в зависимости от величины, которую измеряет устройство.

Читать еще:  Как подключить электросчетчик самому

Если замеряющий агрегат имеет шкалу, на которой деления отображены неравномерно, то класс точности для такого устройства указывают в долях от длины шкалы.

Возможны варианты измерительных аппаратов со значениями шкалы в виде дробей. Числитель такой дроби укажет величину в конце шкалы, а число в знаменателе при нуле.

Нормирование

Классы точности средств измерений сообщают нам информацию о точности таких средств, но одновременно с этим он не показывает точность измерения, выполненного с помощью этого измерительного устройства. Для того, чтобы выявить заблаговременно ошибку показаний прибора, которую он укажет при измерении люди нормируют погрешности. Для этого пользуются уже известными нормированными значениями.й

Нормирование осуществляется по:

Формулы расчета абсолютной погрешности по ГОСТ 8.401

Каждый прибор из конкретной группы приспособлений для замера размеров имеет определенное значение неточностей. Оно может незначительно отличаться от установленного нормированного показателя, но не превышать общие показатели. Каждый такой агрегат имеет паспорт, в который записываются минимальные и максимальные величины ошибок, а также коэффициенты, оказывающие влияние в определенных ситуациях.

Скачать ГОСТ 8.401-80

Все способы нормирования СИ и обозначения их классов точности устанавливаются в соответствующих ГОСТах.

Виды маркирования

Классы точности абсолютно всех измерительных приборов подлежат маркировке на шкале этих самых приборов в виде числа. Используются арабские цифры, которые обозначают процент нормированной погрешности. Обозначение класса точности в круге, например число 1,0, говорит о том, что ошибочность показаний стрелки аппарата будет равна 1%.

Если в обозначении используется кроме цифры еще и галочка, то это значит, что длина шкалы применяется в роли нормирующего значения.

Латинские буквы для обозначения применяются если он определяется пределами абсолютной погрешности.

Существуют аппараты, на шкалах которых нет информации о классе точности. В таких случаях абсолютную следует приравнивать к одной второй наименьшего деления.

Пределы

Как уже говорилось раньше, измерительный прибор, благодаря нормированию уже содержит случайную и систематические ошибки. Но стоит помнить, что они зависят от метода измерения, условий и других факторов. Чтобы значение величины, подлежащей замеру, было на 99% точным, средство измерения должно иметь минимальную неточность. Относительная должна быть примерно на треть или четверть меньше погрешности измерений.

Базовый способ определения погрешности

При установке класса точности в первую очередь нормированию подлежат пределы допустимой основной погрешности, а пределы допускаемой дополнительной погрешности имеют кратное значение от основной. Их пределы выражают в форме абсолютной, относительной и приведенной.

Приведенная погрешность средства измерения – это относительная, выраженная отношением предельно-допустимой абсолютной погрешности к нормирующему показателю. Абсолютная может быть выражена в виде числа или двучлена.

Если класс точности СИ будет определяться через абсолютную, то его обозначают римскими цифрами или буквами латиницы. Чем ближе буква будет к началу алфавита, тем меньше допускаемая абсолютная погрешность такого аппарата.

Класс точности 2,5

Благодаря относительной погрешности можно назначить класс точности двумя способами. В первом случае на шкале будет изображена арабская цифра в кружке, во втором случае дробью, числитель и знаменатель которой сообщают диапазон неточностей.

Основная погрешность может быть только в идеальных лабораторных условиях. В жизни приходится умножать данные на ряд специальных коэффициентов.

Дополнительная случается в результате изменений величин, которые каким-либо образом влияют на измерения (например температура или влажность). Выход за установленные пределы можно выявить, если сложить все дополнительные погрешности.

Случайные ошибки имеют непредсказуемые значения в результате того, что факторы, оказывающие на них влияние постоянно меняются во времени. Для их учета пользуются теорией вероятности из высшей математики и ведут записи происходивших раньше случаев.

Пример расчета погрешности

Статистическая измерительного средства учитывается при измерении какой-либо константы или же редко подверженной изменениям величины.

Динамическая учитывается при замерах величин, которые часто меняют свои значения за небольшой отрезок времени.

Классы точности болтов

Болты и другие крепежные изделия изготавливают нескольких классов:

Каждый из них имеет свои допуски измеряемой величины, отличные от остальных и применяется в различных сферах.

Крепеж С используют в отверстиях с диаметром немногим больше диаметра болта (до 3мм). Болты без труда устанавливаются, не отнимая много времени на работу. Из минусов стоит отметить то, что при физическом воздействии на такой крепеж, болтовое соединение может сместиться на несколько миллиметров.

Крепеж В подразумевает использование болтов, диаметр которых меньше отверстия в пределах 1-1,5 мм. Это позволяет конструкции меньше подвергаться смещениям и деформациям, но повышаются требования к изготовлению отверстий в креплениях.

Гайки шестигранные класса точности В

Крепеж А создается по проекту. Диаметр болта такого типа, меньше диаметра отверстия максимум на 0,3 мм и имеет допуск только со знаком минус. Это делает крепеж неподвижным, не позволяет происходить смещению узлов. Изготовление болтов А-класса стоит дороже и не всегда используется в производстве.

Класс точности присутствует в описании всех измерительных приборов и является одной из самых важных характеристик. Чем выше его значение, тем более дорогостоящий будет прибор, но в то же время он сможет предоставить более точную информацию. Выбор стоить делать исходя из сложившейся ситуации и целей в которых будет использоваться такое средство. Важно понимать, что в некоторых ситуациях экономически выгодно будет приобрести дорогостоящее сверхточное оборудование, чтобы в дальнейшем сберечь деньги.

Погрешности средств измерений. Класс точности прибора

В результате воздействия большого числа факторов, влия­ющих на изготовление и эксплуатацию средств измерений, по­казания приборов отличаются от истинных значений измеряе­мых ими величин. Эти отклонения характеризуют погрешность средств измерений. Погрешности СИ в отличие от погрешности измерений имеют другую физическую природу, так как они от носятся к СИ, с помощью которого осуществляют измерение. Они являются лишь составной частью погрешности измерения.

Классификация погрешностей средств измерений в зависи­мости от разных признаков:

В понятия абсолютной, относительной, систематической и случайной погрешностей вкладывается тот же смысл, что и в понятия погрешностей измерений.

Приведенная погрешность средства измерений равна отноше­нию абсолютной погрешности прибора ΔХ к некоторому норми­рующему значению XN :

Таким образом, приведенная погрешность является разновид­ностью относительной погрешности прибора. В качестве норми­рующего значения XN принимают диапазон измерений, верх­ний предел измерений, длину шкалы и др.

Основная погрешность — погрешность средства измерений, используемого в нормальных условиях. При эксплуатации СИ на производстве возникают значительные отклонения от нор­мальных условий, вызывающие дополнительные погрешности.

Нормальными условиями для линейных измерений считают­ся:

• температура окружающей среды 20°С

• атмосферное давление 101325 Па (760 мм рт.ст.)

• относительная влажность окружающего воздуха 58%

• ускорение свободного падения 9,8 м/с

• направление линии и плоскости измерения — горизонтальное

• относительная скорость движения внешней воздушной среды равна нулю.

В тех случаях, когда средство измерения применяется для измерения постоянной или переменной во времени величины, для его характеристики используют понятия статическая и динамическая погрешности соответственно. Динамическая погрешность определяется как разность между погрешностью измерения в динамическом режиме и его статической погрешностью, равной значению величины в данный момент времени. Динами­ческие погрешности возникают вследствие инерционных свойств средств измерения.

Для рассмотрения зависимости погрешности средства измерения от значения измеряемой величины используют понятие номинальной и реальной функций преобразования — соответствен­но Y = (Х) и Y = fр(X).

Читать еще:  Диод с барьером шоттки что это такое

Номинальная функция преобразования приписана измери­тельному устройству, указывается в его паспорте и используется при выполнении измерений.

Реальной функцией преобразования называют ту, которой обладает конкретный экземпляр СИ дан­ного типа.

Реальная функция преобразования имеет отклонение от но­минальной функции и связана со значением измеряемой вели­чины. Систематическую погрешность в функции измеряемой величины можно представить в виде суммы погрешности схемы, определяемо самой структурной схемой средства измерений, и технологических погрешностей, обусловленных погрешностями изготовления его элементов. Технологические погрешности принято разделять на аддитивную, мультипликативную, гистерезиса и линейности.

Аддитивной погрешностью (получаемой путем сложения), или погрешностью нуля, называют погрешность, которая оста­ется постоянной при всех значениях измеряемой величины.

Мультипликативная погрешность (получаемая путем умно­жения), или погрешность чувствительности СИ, линейно воз­растает или убывает с изменением измеряемой величины. В большинстве случаев аддитивная и мульти­пликативная составляющие присутствуют одновременно.

Погрешность гистерезиса, или Погрешность обратного хода, выражается в несовпадении реальной функции преобразования при увели­чении (прямой ход) и уменьшении (обратный ход) измеряемой величины. Если взаимное распо­ложение номинальной и реальной функций преобразования средства измерений вызвано нелинейностью, то эту погрешность называют погрешностью линейности.

В разных точках диапазона средств измерений погрешность может принимать различные значе­ния. В этом случае необходимо нор­мировать пределы допускаемых по­грешностей, т.е. устанавливать грани­цы, за пределы которых погрешность не должна выходить ни при изготовлении, ни в процессе эксплуатации. Для этого служит класс точности СИ.

Класс точности — это обобщенная характеристика, определяемая пре­делами допускаемых основных и до­полнительных погрешностей, а также другими свойствами, влия­ющими на точность, значения кото­рых устанавливают в стандартах на отдельные виды средств измерений.

Способы установления классов точности изложены в ГОСТ 8.401 “ГСИ. Классы точности средств измерения. Общие требования”. Стандарт не распространяется на средства измерений, для которых предусматриваются раздельные нормы на систематическую и случайные составляющие, а также на средства измерений, для которых нормированы номинальные функции влияния, а измерения проводятся без введения поправок на влияющие величины. Классы точности не устанавливаются и на средства измерений, для которых существенное значение имеет динамическая погрешность.

Класс точности не является непо­средственным показателем точности измерений, так как точность изме­рений зависит еще от метода и ус­ловий измерений.

В зависимости от вида погреш­ности средства измерений существу­ет несколько способов нормирования погрешности.

Если аддитивная погрешность СИ преобладает над мультипликативной, удобнее нормировать абсолютную или приведенную погрешности соответственно:

Нормирование по абсолютной погрешности не позволяет срав­нивать по точности приборы с разными диапазонами измерений, поэтому принято нормировать приведенную погрешность, где р — отвлеченное положительное число, выбираемое из ряда

(1,5; 2; 2,5; 4; 5; 6) 10* (п = 1, О, — 1, — 2 и т.д.);

XN — нормирующее значение, равное конечному значению шкалы прибора, диапазону измерений или длине шкалы, если она нелинейная.

Если мультипликативная погрешность преобладает над адди­тивной, то нормируется предел допускаемой относительной по­грешности:

где q — отвлеченное положительное число, выбираемое из ряда, приведенного для р.

При одновременном проявлении аддитивной и мультиплика­тивной погрешностей нормируется предел относительной или аб­солютной погрешностей, определяемых формулами соответствен­но:

,

где Хк — конечное значение шкалы прибора; с и d — положи­тельные числа, выбираемые из ряда, приведенного для р; Xизм — значение измеряемой величины на входе(выходе) средств измерений или число делений, отсчитанных по шкале; а и b положительные числа, не зависящие от Xизм.

Обозначение классов точности в документации и на средствах измерений приведены в табл.

Если пределы допускаемой погрешности средств измерений задаются в виде графиков, таблиц или в сложной форме, то классы точности обозначаются римскими цифрами или прописными буквами латинского алфавита.


Регулировка и градуировка средств измерений

В большинстве случаев в измерительном приборе (преобразователе) можно найти или предусмотреть такие элементы, вариация параметров которых наиболее заметно сказывается на его систематической погрешности, главным образом погрешности схемы, аддитивной и мультипликативной погрешностях.

В общем случае в конструкции измерительного прибора должны быть предусмотрены два регулировочных узла: регулировка нуля и регулировка чувствительности. Регулировкой нуля уменьшают влияние аддитивной погрешности, постоянной для каждой точки шкалы, а регулировкой чувствительности уменьшают мультипликативные погрешности, меняющиеся линейно с изменением измеряемой величины. При правильной регулировке нуля и чувствительности уменьшается и влияние погрешности схемы прибора. Кроме того, некоторые приборы снабжаются устройствами для регулировки погрешности схемы (пружинные манометры).

Таким образом, под регулировкой средств измерения понимается совокупность операций, имеющих целью уменьшить основную погрешность до значений, соответствующих пределам ее допускаемых значений, путем компенсации систематической составляющей погрешности средств измерений, т.е. погрешности схемы, мультипликативной и аддитивной погрешностей.

Градуировкой называется процесс нанесения отметок на шкалы средств измерений, а также определение значений измеряемой величины, соответствующих уже нанесенным отметкам, для составления градуировочных кривых или таблиц.

Различают следующие способы градуировки:

использование типовых (печатных) шкал, которые изготовляются заранее в соответствии с уравнением статической характеристики идеального прибора;

индивидуальная градуировка шкал. Индивидуальную градуировку шкал осуществляют в тех случаях, когда статическая характеристика прибора нелинейна или близка к линейной, но характер изменения систематической погрешности в диапазоне измерения случайным образом меняется от прибора к прибору данного типа так, что регулировка не позволяет уменьшить основную погрешность до пределов ее допускаемых значений. Индивидуальную градуировку проводят в следующем порядке. На предварительно отрегулированном приборе устанавливают циферблат с еще не нанесенными отметками. К измерительному прибору подводят последовательно измеряемые величины нескольких наперед заданных или выбранных значений. На циферблате нанося отметки, соответствующие положениям указателя при этих значениях измеряемо величины, а расстояния между отметками делят на равные части. При индивидуальной градуировке систематическая погрешность уменьшается во всем диапазоне измерения, а в точках, полученных при градуировке, она достигает значения, равного погрешности обратного хода;

градуировка условной шкалы. Условной называется шкала, снабженная некоторыми условными равномерно нанесенными делениями, например, через миллиметр или угловой градус. Градуировка шкалы состоит в определении при помощи образцовых мер или измерительных приборов значений измеряемой величины соответствующих некоторым отметкам, нанесенным на ней. В результате определяют зависимость числа делений шкалы, пройденных указателем, от значений измеряемой величины. Эту зависимость представляют в виде таблицы или графика. Если необходимо избавиться и от погрешности обратного хода. Градуировку осуществляют раздельно при прямом и обратном ходе.

Погрешности средств измерений. Класс точности прибора

В результате воздействия большого числа факторов, влия­ющих на изготовление и эксплуатацию средств измерений, по­казания приборов отличаются от истинных значений измеряе­мых ими величин. Эти отклонения характеризуют погрешность средств измерений. Погрешности СИ в отличие от погрешности измерений имеют другую физическую природу, так как они от носятся к СИ, с помощью которого осуществляют измерение. Они являются лишь составной частью погрешности измерения.

Классификация погрешностей средств измерений в зависи­мости от разных признаков:

В понятия абсолютной, относительной, систематической и случайной погрешностей вкладывается тот же смысл, что и в понятия погрешностей измерений.

Приведенная погрешность средства измерений равна отноше­нию абсолютной погрешности прибора ΔХ к некоторому норми­рующему значению XN :

Таким образом, приведенная погрешность является разновид­ностью относительной погрешности прибора. В качестве норми­рующего значения XN принимают диапазон измерений, верх­ний предел измерений, длину шкалы и др.

Основная погрешность — погрешность средства измерений, используемого в нормальных условиях. При эксплуатации СИ на производстве возникают значительные отклонения от нор­мальных условий, вызывающие дополнительные погрешности.

Читать еще:  Схемы антенн для приема телевидения

Нормальными условиями для линейных измерений считают­ся:

• температура окружающей среды 20°С

• атмосферное давление 101325 Па (760 мм рт.ст.)

• относительная влажность окружающего воздуха 58%

• ускорение свободного падения 9,8 м/с

• направление линии и плоскости измерения — горизонтальное

• относительная скорость движения внешней воздушной среды равна нулю.

В тех случаях, когда средство измерения применяется для измерения постоянной или переменной во времени величины, для его характеристики используют понятия статическая и динамическая погрешности соответственно. Динамическая погрешность определяется как разность между погрешностью измерения в динамическом режиме и его статической погрешностью, равной значению величины в данный момент времени. Динами­ческие погрешности возникают вследствие инерционных свойств средств измерения.

Для рассмотрения зависимости погрешности средства измерения от значения измеряемой величины используют понятие номинальной и реальной функций преобразования — соответствен­но Y = (Х) и Y = fр(X).

Номинальная функция преобразования приписана измери­тельному устройству, указывается в его паспорте и используется при выполнении измерений.

Реальной функцией преобразования называют ту, которой обладает конкретный экземпляр СИ дан­ного типа.

Реальная функция преобразования имеет отклонение от но­минальной функции и связана со значением измеряемой вели­чины. Систематическую погрешность в функции измеряемой величины можно представить в виде суммы погрешности схемы, определяемо самой структурной схемой средства измерений, и технологических погрешностей, обусловленных погрешностями изготовления его элементов. Технологические погрешности принято разделять на аддитивную, мультипликативную, гистерезиса и линейности.

Аддитивной погрешностью (получаемой путем сложения), или погрешностью нуля, называют погрешность, которая оста­ется постоянной при всех значениях измеряемой величины.

Мультипликативная погрешность (получаемая путем умно­жения), или погрешность чувствительности СИ, линейно воз­растает или убывает с изменением измеряемой величины. В большинстве случаев аддитивная и мульти­пликативная составляющие присутствуют одновременно.

Погрешность гистерезиса, или Погрешность обратного хода, выражается в несовпадении реальной функции преобразования при увели­чении (прямой ход) и уменьшении (обратный ход) измеряемой величины. Если взаимное распо­ложение номинальной и реальной функций преобразования средства измерений вызвано нелинейностью, то эту погрешность называют погрешностью линейности.

В разных точках диапазона средств измерений погрешность может принимать различные значе­ния. В этом случае необходимо нор­мировать пределы допускаемых по­грешностей, т.е. устанавливать грани­цы, за пределы которых погрешность не должна выходить ни при изготовлении, ни в процессе эксплуатации. Для этого служит класс точности СИ.

Класс точности — это обобщенная характеристика, определяемая пре­делами допускаемых основных и до­полнительных погрешностей, а также другими свойствами, влия­ющими на точность, значения кото­рых устанавливают в стандартах на отдельные виды средств измерений.

Способы установления классов точности изложены в ГОСТ 8.401 “ГСИ. Классы точности средств измерения. Общие требования”. Стандарт не распространяется на средства измерений, для которых предусматриваются раздельные нормы на систематическую и случайные составляющие, а также на средства измерений, для которых нормированы номинальные функции влияния, а измерения проводятся без введения поправок на влияющие величины. Классы точности не устанавливаются и на средства измерений, для которых существенное значение имеет динамическая погрешность.

Класс точности не является непо­средственным показателем точности измерений, так как точность изме­рений зависит еще от метода и ус­ловий измерений.

В зависимости от вида погреш­ности средства измерений существу­ет несколько способов нормирования погрешности.

Если аддитивная погрешность СИ преобладает над мультипликативной, удобнее нормировать абсолютную или приведенную погрешности соответственно:

Нормирование по абсолютной погрешности не позволяет срав­нивать по точности приборы с разными диапазонами измерений, поэтому принято нормировать приведенную погрешность, где р — отвлеченное положительное число, выбираемое из ряда

(1,5; 2; 2,5; 4; 5; 6) 10* (п = 1, О, — 1, — 2 и т.д.);

XN — нормирующее значение, равное конечному значению шкалы прибора, диапазону измерений или длине шкалы, если она нелинейная.

Если мультипликативная погрешность преобладает над адди­тивной, то нормируется предел допускаемой относительной по­грешности:

где q — отвлеченное положительное число, выбираемое из ряда, приведенного для р.

При одновременном проявлении аддитивной и мультиплика­тивной погрешностей нормируется предел относительной или аб­солютной погрешностей, определяемых формулами соответствен­но:

,

где Хк — конечное значение шкалы прибора; с и d — положи­тельные числа, выбираемые из ряда, приведенного для р; Xизм — значение измеряемой величины на входе(выходе) средств измерений или число делений, отсчитанных по шкале; а и b положительные числа, не зависящие от Xизм.

Обозначение классов точности в документации и на средствах измерений приведены в табл.

Если пределы допускаемой погрешности средств измерений задаются в виде графиков, таблиц или в сложной форме, то классы точности обозначаются римскими цифрами или прописными буквами латинского алфавита.


Регулировка и градуировка средств измерений

В большинстве случаев в измерительном приборе (преобразователе) можно найти или предусмотреть такие элементы, вариация параметров которых наиболее заметно сказывается на его систематической погрешности, главным образом погрешности схемы, аддитивной и мультипликативной погрешностях.

В общем случае в конструкции измерительного прибора должны быть предусмотрены два регулировочных узла: регулировка нуля и регулировка чувствительности. Регулировкой нуля уменьшают влияние аддитивной погрешности, постоянной для каждой точки шкалы, а регулировкой чувствительности уменьшают мультипликативные погрешности, меняющиеся линейно с изменением измеряемой величины. При правильной регулировке нуля и чувствительности уменьшается и влияние погрешности схемы прибора. Кроме того, некоторые приборы снабжаются устройствами для регулировки погрешности схемы (пружинные манометры).

Таким образом, под регулировкой средств измерения понимается совокупность операций, имеющих целью уменьшить основную погрешность до значений, соответствующих пределам ее допускаемых значений, путем компенсации систематической составляющей погрешности средств измерений, т.е. погрешности схемы, мультипликативной и аддитивной погрешностей.

Градуировкой называется процесс нанесения отметок на шкалы средств измерений, а также определение значений измеряемой величины, соответствующих уже нанесенным отметкам, для составления градуировочных кривых или таблиц.

Различают следующие способы градуировки:

использование типовых (печатных) шкал, которые изготовляются заранее в соответствии с уравнением статической характеристики идеального прибора;

индивидуальная градуировка шкал. Индивидуальную градуировку шкал осуществляют в тех случаях, когда статическая характеристика прибора нелинейна или близка к линейной, но характер изменения систематической погрешности в диапазоне измерения случайным образом меняется от прибора к прибору данного типа так, что регулировка не позволяет уменьшить основную погрешность до пределов ее допускаемых значений. Индивидуальную градуировку проводят в следующем порядке. На предварительно отрегулированном приборе устанавливают циферблат с еще не нанесенными отметками. К измерительному прибору подводят последовательно измеряемые величины нескольких наперед заданных или выбранных значений. На циферблате нанося отметки, соответствующие положениям указателя при этих значениях измеряемо величины, а расстояния между отметками делят на равные части. При индивидуальной градуировке систематическая погрешность уменьшается во всем диапазоне измерения, а в точках, полученных при градуировке, она достигает значения, равного погрешности обратного хода;

градуировка условной шкалы. Условной называется шкала, снабженная некоторыми условными равномерно нанесенными делениями, например, через миллиметр или угловой градус. Градуировка шкалы состоит в определении при помощи образцовых мер или измерительных приборов значений измеряемой величины соответствующих некоторым отметкам, нанесенным на ней. В результате определяют зависимость числа делений шкалы, пройденных указателем, от значений измеряемой величины. Эту зависимость представляют в виде таблицы или графика. Если необходимо избавиться и от погрешности обратного хода. Градуировку осуществляют раздельно при прямом и обратном ходе.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector