201 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Lm393n схема включения как работает

Инфракрасный датчик препятствия на компараторе LM393

В данном обзоре мы рассмотрим и протестируем модуль инфракрасного датчика препятствия с обозначением MH-B. Модуль построен на сдвоенном компараторе LM393.

В Грузию товар был доставлен бесплатно компанией “4PX Singapore Post OM Pro” в стандартном пакете:

Плата модуля была герметично запечатана в антистатический пакет и обвернута полиэтиленом с пупырышками:

С одной стороны платы имеются штырьки для подачи питания и снятия сигнала, а с противоположной стороны параллельно друг другу установлены инфракрасный светодиод и фотодиод, которые нужно направлять в сторону препятствия для определения его наличия:

Все контакты подписаны и будет очень легко подключиться к модулю:

  • На VCC подаётся напряжение питания;
  • Вывод GND – общий;
  • С вывода OUT снимается сигнал.

С другой стороны платы написано +OUT, но это не совсем так, и об этом мы поговорим позже:

Кроме микросхемы и светодиода с фотодиодом из радиоэлементов на модуле имеются:

  • светодиод индикации питания;
  • светодиод индикации сигнала;
  • два гасящих резистора для светодиодов на 1 кОм;
  • гасящий резистор инфракрасного светодиода на 100 Ом
  • два резистора смещения по 10 кОм;
  • подстроечный резистор на 10 кОм
  • два шунтирующих конденсатора по 0,1 мкФ;

Как уже говорилось модуль основан на сдвоенном компараторе LM393. Коротко рассмотрим документацию на эту микросхему:

Серия LM393 представляет собой двойные независимые прецизионные компараторы напряжения, способные работать с одиночным или раздельным питанием. Эти устройства спроектированы таким образом, чтобы обеспечить общий режим от одного до другого с одним режимом питания. Спецификации смещения входного напряжения до 2,0 мВ делают это устройство отличным выбором для многих применений в потребительской, автомобильной и промышленной электронике. Особенности компаратора LM393:

  • Широкий диапазон питания постоянного тока с одним источником(от 2,0 В до 36 В);
  • Диапазон двуполярного питания от 1,0 В до 18 В постоянного тока;
  • Очень низкий ток покоя, независящий от напряжения питания(0,4 мА);
  • Низкий синфазный входной ток смещения(25 нА);
  • Низкий дифференциальный входной ток смещения(5 нА);
  • Низкое входное напряжение смещения(5,0 мВ макс.);
  • Дифференциальное входное напряжение, равное напряжению питания;
  • Выходное напряжение, совместимое с логическими уровнями DTL, ECL, TTL, MOS и CMOS;
  • Температура окружающей среды от 0 ° C до 70 ° C.

У микросхемы восемь выводов, два из которых общий(4) и плюс питания(8), два других выходы: 1 – выход компаратора A, 7 – выход компаратора B. Выводы 2 и 3 соответственно инверсный и прямой вход компаратора A, а выводы 5 и 6 соответственно прямой и инверсный входы компаратора B. Представляю так же внутреннюю схему одного из компараторов:

Как видно из схемы выход компаратора представляет из себя каскад на транзисторе с открытым коллектором.

Весь модуль в собранном виде не больше длины спичинки и легко может уместится в небольшом пространстве:

Перейдем к проверке и для этого нам понадобится:

  1. блок питания небольшой мощности на 5 Вольт;
  2. разъём для подключения к штырькам модуля;
  3. светодиод для индикации сигнала на выходе;
  4. токоограничительный резистор для светодиода на сопротивление 220 Ом;
  5. ну и собственно сам модуль разумеется

Проверять мы будем самым простым способом, без всяких контроллеров, и все это мы соединим по следующей схеме:

В описании к модулю говорится что он будет работать при напряжении от 3 В до 5 В и мы будем проверять с напряжением питания 5 В. Хочу отметить одну особенность – в начале я говорил, что на штырьке выхода подписано +OUT и что это не совсем так. Из внутренней схемы компаратора, на котором собран модуль, видно что коллектор выходного транзистора никуда не подключён и на нём никак не может быть “+”, хотя на плате модуля установлен резистор смещения между выходом и плюсом питания на 10 кОм, но в некоторых случаях этого может быть недостаточным, и при этом получается что выход работает инверсно: при срабатывании датчика на выходе будет логический “0”. Это нужно учесть при конструировании некоторых поделок. Сначала я все же поверил надписи на плате и подключил светодиод между выходом и общим проводом, но светодиод начинал светится сразу при подаче питания без препятствия перед модулем, а во время срабатывания при поднесении препятствия на 3 см. он наоборот гаснет:

Пришлось подключить светодиод между выходом и плюсом питания. Собираем правильную схему и подаём напряжение питания:

Видим что без препятствия светодиод не светится.

Замеряем ток и видим что без препятствия в режиме покоя ток потребления 36 мА:

После срабатывания светится светодиод индикации наличия сигнала и потребляемый ток увеличивается до 47 мА:

Изменяя сопротивление подстроечного резистора я замерил стабильное минимально И максимально возможное расстояние срабатывания датчика. При вращении оси подстроечного резистора против часовой стрелки расстояние срабатывания уменьшается и минимально возможное расстояние составило 1 см.:

При вращении же оси подстроечного резистора по часовой стрелке расстояние срабатывания датчика увеличивается и максимальное надёжное расстояние срабатывания датчика составило около 12 см.:

Читать еще:  Диаметры дюймовых труб в миллиметрах

В темноте хорошо заметно, что срабатывание датчика происходит не резко скачком, а плавно. При приближении препятствия к датчику выходное напряжение возрастает постепенно, и так же постепенно уменьшается при удалении препятствия от датчика. Это говорит о невысоком качестве датчика, но оно оправдано весьма низкой его стоимостью:

Я специально произвел проверку модуля без контроллера подручными и доступными средствами, чтобы все было просто и наглядно. Не малую роль так же играет повторяемость.

Хочу добавить, что я собираюсь использовать этот модуль в автономной конструкции и меня не устраивает такой большой ток потребления. Это был просто обзор и проверка работоспособности, а что можно сделать для уменьшения потребляемого тока я расскажу в другой статье.

LM393. Описание, datasheet, схема включения, аналог

Микросхема LM393 имеет в своем корпусе два независимых компаратора напряжения. Компаратор LM393 может работать, как от однополярного источника питания в широком диапазоне напряжений, так и от двухполярного источника. При использовании двухполярного — разница между потенциалами должна составлять от 2 В до 36 В.

Ток потребления компаратора не зависит от напряжения питания. Необходимо обратить внимание, что данный компаратор имеет выход с открытым коллектором.

Ключевая особенность LM393

  • Широкий диапазон напряжения питания: 2…36 В или ±1…±18 В
  • Очень низкий ток потребления (0,45 мА)
  • Низкий входной ток смещения: 20 нА
  • Низкий входной ток смещения: ± 3 нА
  • Низкое входное напряжение смещения: ± 1 мВ тип
  • Низкое выходное напряжение насыщения: 80 мВ
  • TTL, DTL, ECL, MOS, CMOS совместимые выходы
  • Компаратор LM393 доступен в корпусе: DFN8 2х2, MiniSO8, TSSOP8 и SO8

Технические характеристики LM393

Ниже приведены основные электрические характеристики и абсолютные максимальные значения эксплуатации LM393:

Принципиальная схема LM393

Назначение выводов (распиновка)

Аналог LM393

Для замены можно использовать следующие зарубежные и отечественные аналоги LM393:

зарубежный аналог

  • AN1393
  • AN6916
  • AN6914
  • GL393
  • IR9393
  • NJM2903D
  • TA75393AP
  • UPC393C
  • UA393

отечественный аналог

  • 1040СА1
  • КР1040СА1
  • 1401CA3

Принцип работы LM393

Чтобы понять как же работает данный компаратор, рассмотрим простую схему сумеречного автомата.

Глядя на схему мы видим, что оба входа компаратора подключены к делителям напряжения. Первый делитель напряжения, подключенный к инвертирующему входу (2), состоит из постоянного резистора и фоторезистора.

Как известно сопротивление неосвещенного фоторезистора имеет очень большое сопротивление (более 1МОм), и малое при освещении. Поэтому в ночное время суток, согласно логике работы делителя напряжения, напряжение на входе (2) компаратора будет выше, чем в дневное время суток.

Чтобы включать и выключать свет (в нашем случае светодиод), в зависимости от степени освещенности фоторезистора, нам необходимо установить порог переключения. Для этого служит неинвертирующий вход (3) на который необходимо подать опорное (неизменяемое) напряжение. Это опорное напряжение мы возьмем с переменного резистора R3, который выполняет роль делителя напряжения.

Теперь компаратор будет сравнивать два уровня напряжения (на выводах 2 и 3). Если напряжение на входе 2 будет больше чем на входе 3, то светодиод загорится. Как только напряжение на входе 2 опустится (при освещении фоторезистора) ниже уровня напряжения на входе 3, светодиод погаснет.

Скачать datasheet LM393 в формате pdf (595,7 KiB, скачано: 7 226)

Тройной индикатор АКБ 12В на LM393/358

Очень важно контролировать разряд любого аккумулятора, ведь у каждого из них есть некое пороговое напряжение, ниже которого его нельзя разряжать, иначе аккумулятор потеряет значительную часть свой ёмкости, быстрее деградирует и не сможет выдавать заявленный ток, придётся покупать новый, а он не дешевый.


В этой статье я расскажу и покажу как сделать очень простой индикатор напряжение для кислотно-свинцовых аккумуляторов 12V, широко использующихся в автомобилях, а также скутерах, мотоциклах и прочем транспорте. Если вы поймете принцип работы схемы-индикатора и назначение каждой детали, то сможете подстроить её практически для любого вида перезаряжаемых батарей, изменяя номиналы определенных электронных компонентов.

Принципиальная схему с указанными номиналами может давать вам примерную информацию о значении напряжения на выводах батареи тремя светодиодами. Цвет светодиода, в принципе можно выбирать любой понравившейся, но рекомендую использовать именно такие, как у меня, они дают четкое представление о положении батареи благодаря ассоциациям.

Итак, когда горит зеленый, то напряжение АКБ в норме (от 11,6 до 13 Вольт), если же светит белый – это значит U=13 и более, а когда же яркий красный работает, то необходимо срочно отключать нагрузку и ставить аккумулятор на подзарядку током 0,1C, напряжение 11,5 Вольт и ниже, АКБ разрядился более чем на 80 процентов. Напомню, что эти значения примерные и у вас будут немного отличаться из-за разброса характеристик используемыъ компонентов.

Ток потребление такого светодиодного оповещателя небольшой, до 15 mA. Кого это напрягает – не беда, в разрыв ставим тактовую кнопочку и радуемся. С этого момента проверка батареи ведется нажатием кнопки и анализом цвета свечения.

Читать еще:  Трубогиб арбалетный для медных труб

Защищаем плату от воды и крепим на аккумулятор, теперь очень удобно – примитивный вольтметр всегда с источником тока, в любую секунду можно протестировать его.

Печатная плата сделана миниатюрная, всего 2,2 сантиметров. В моем случае используется микросхема lm358 в DIP-8 корпусе. Резисторы желательно брать с точностью 1% (прецизионные), кроме токоогрничительных. СветxXодиоды используются практически любые (3mm, 5mm) с током 20 mA.

Проверка производиться с помощью лабораторного блока питания на линейном стабилизаторе LM317, как видно из фото срабатывание четкое, могут светиться два светодиода, правильным будет последний. Для более точной настройки я крайне рекомендую использовать подстрочные резисторы, как на плате номер два, с помощью них вы очень точно отрегулируете те напряжение, при которых будут загораться светодиоды.

Разберем работу схемы светодиодного индикатора уровня напряжения АКБ. Самой главной деталью является конечно же микросхема LM393 или LM358 (аналог КР1401СА3 / КФ1401СА3), в середине её есть два компаратора (треугольники).

Как видно из рисунка ниже всего восемь ножек, восьмая и четвертая питание, а остальные – это входы и выходы компараторов. Возьмем сначала один для объяснение его работы, три вывода, два входа (прямой (неинвертирующий) “+” и инвертирующий “–“) и один выход. На неинвертирующий (+) подается опорное напряжение (то, с котором будет сравнено напряжение, подаваемое на инвертирующий (-) вход).

Если U на прямом больше, чем на инвертирующем входе, то на выходе имеем минус питания, а если же наоборот (на инвертирующем большее значение напряжения, чем на прямом) на выходе плюс питания.

Стабилитрон включается в цепь наоборот (то есть анод к минусу, а катод к плюсу), у него есть так называемый рабочий ток, при котором он и будет хорошо стабилизировать, посмотрите на график ниже и всё поймете.

Этот ток разный для разных по мощности и напряжении стабилитронов, в документации стабилитрона указывается минимальный (Iz) и максимальный ток (Izrm) стабилизации. Выбирайте нужный в этих промежутках, нам хватит и минимального – это значение тока достигается благодаря резистору.

А вот и простенькие расчеты: полное U=10 Вольт, стабилитрон у нас на 5,6 Вольт, значится 10-5,6=4,4 Вольт. По документации (даташиту) min Iст=5 mA. Считаем R=4,4 V / 0,005 A = 880 Ом. Значение сопротивления резистора немного могут отклоняться, как у меня, ничего страшного, главное чтобы ток был не менее Iz.

Тройной делитель напряжение состоящий из резисторов 100 кОм, 10 кОм и 82 кОм. На каждом из этих пассивных компонентов “осаживается” определенной напряжение. Оно у нас подается на инвертирующий входа.

В зависимости от степени разряженности/заряженности АКБ на них падает разное напряжение. Схема, построенная таким образом, что стабилитрон ZD1 5V6 подает на прямые входа собственно 5,6 Вольт (опорное U, то с чем будет сравнено напряжение на непрямых входах). И если, например, аккумулятор разряжен сильно, то на непрямой вход первого компаратора подается меньшее напряжение, чем на прямой, а на вход второго большее.

Таким образом первый дает минус на выходе, а второй плюс – светит только красный. Зеленый светиться тогда, когда компаратор I выдает плюс, а II минус. Белый, когда оба дают на выходе плюс, из-за этого могут светиться сразу два последних светоизлучающих диода.

Чуть ниже смотрите фото готового индикатора напряжения.

И ещё хочу отметить один момент,если у вас автомобиль Опель, и вы хотите что-либо с ним сделать, например тюнинг или просто подремонтировать, то есть отличная компания, которая как раз этим и занимается.

Random stuff

Square waves

Компаратор LM393

Прошло почти два года с тех пор, как я пытался приручить операционный усилитель УД708 для сравнения двух сигналов. Знаний тогда было мало, поэтому времени уходило много, а главное — еще и безрезультатно. Но в итоге для своей задачи я смог «договориться» с компаратором LM393N. А на днях перебирал поделку, в которой впервые использовал эту микросхему, и решил вспомнить, как работает компаратор. Заодно и другим рассказать.
Компаратор — это устройство, сравнивающее два аналоговых сигнала. В самом простом случае — операционный усилитель без обратных связей. На входы ему подаются два напряжения — эталонное, оно же опорное (известно заранее) и измеряемое. На выходе возможны два состояния:

«1» — когда напряжение на прямом входе больше, чем на инвертирующем;
«0» — когда напряжение на прямом входе меньше, чем на инвертирующем.

Некоторые компараторы самостоятельно формируют уровни логических нуля и единицы (например, «ноль» — это ноль, «единица» — плюс пять вольт), но LM393 — с открытым коллектором. Ей для создания выходного напряжения нужен внешний резистор, подключающийся либо к «плюсу» питания, либо к другому «плюсу» (в разумных пределах, конечно).

Первые две схемы — каноничное включение нагрузки под открытый коллектор. Я подключал внешний резистор к питающему «плюсу».

Читать еще:  Инструментальный шкаф своими руками

Включение 1


В корпусе микросхемы содержатся два компаратора.
IN (-) — инвертирующий вход, IN (+) — прямой. Сейчас делитель подключен на инвертирующий вход, измеряемое напряжение — на прямой.
R1 и R2 — резистивный делитель, с которого идет опорное напряжение.
R3 — внешний резистор. Я для экспериментов взял 1 кОм.
R4 — токоограничивающий резистор для светодиода. Для другой нагрузки (например, обмотки реле) он может оказаться ненужным.


Питание — 9 вольт. С делителя (желтый провод) идут 6 вольт. Синий провод (измеряемое напряжение) идет к потенциометру ручной регулировки.
хемы на фотографиях могут несколько отличаться друг от друга — было две серии экспериментов).


Напряжение на прямом входе (0 В) меньше, чем напряжение на инвертирующем (6 В). Компаратор выдает «ноль».


Напряжение на прямом входе (6,14 В) стало больше, чем на инвертирующем. Компаратор «перещелкнулся» на «единицу», светодиод включился.

Где можно применить: индикатор закипания охлаждающей жидкости.


Опорное напряжение задается равным напряжению, которое выдает датчик температуры при ста градусах.

Включение 2


Измеряемое напряжение подается на инвертирующий вход, опорное — на прямой.


Пока напряжение на инвертирующем входе меньше, чем на прямом, компаратор выдает «единицу», и светодиод горит. В противном случае — «ноль».

Где можно применить: индикатор низкого давления масла.


Опорное напряжение задается равным напряжению, которое выдает датчик давления при критически низком давлении в системе.

Индикатор «топливо на исходе».


Опорное напряжение задается равным напряжению, которое выдает датчик уровня при малом остатке топлива в баке.

Индикатор разряда батареи. Здесь опорное напряжение лучше создать стабилитроном, а измеряемое подавать через делитель. Очень хорошо об этом написано здесь. Такую железяку я собирал — работает.

И еще две схемы — неканоничное включение нагрузки: светодиод через резистор подключается непосредственно к выходу компаратора. В этом случае логика его работы обратна.

«0» — когда напряжение на прямом входе больше, чем на инвертирующем;
«1» — когда напряжение на прямом входе меньше, чем на инвертирующем.

Включение 3


Опорное напряжение — на инвертирующем входе, измеряемое — на прямом.


Напряжение на прямом входе меньше, чем на инвертирующем — светодиод горит. В противном случае — нет.

Включение 4


Измеряемое напряжение подается на инвертирующий вход, опорное — на прямой.


Пока напряжение на инвертирующем входе меньше, чем на прямом, компаратор выдает «ноль», и светодиод не горит. Иначе — «единица».

Вообще, лучше, конечно, пользоваться первыми двумя общепринятыми схемами, чтобы не было путаницы.


Еще один важный момент — подключение нагрузки (светодиода) к другому напряжению (как мог, изобразил 24 вольта). Справедливо для любого из ранее изображенных включений.

О нагрузке. В даташите о максимальном токе коллектора сказано, что больше 6-20 мА микросхема не выдаст. То есть включить один светодиод — не проблема, а вот что побольше…


Кусок светодиодной ленты, подключенный прямо к выходу компаратора (по третьей или четвертой схеме, без резистора R3) светил слабо (1 мА). Пришлось поддать напряжения до 12 вольт, и тогда ток коллектора вырос до 14 мА. При подключении ленты напрямую к блоку питания — 32 мА. Таким образом, как ни крути, а максимум, что можно получить конкретно от этой LM-ки — 14 мА.

Вывод — что-то прожорливое есть смысл пускать через транзистор, загнанный в ключевой режим. При этом каскаду с общим эмиттером, инвертирующему сигнал, как нельзя лучше подойдет третья или четвертая схемы включения. Ведь если сигнал инвертировать дважды — получится опять исходный сигнал.
Например, на прямом входе компаратора «единица» (по привычной логике — на прямом входе напряжение больше, чем на инвертирующем). Третья схема сделает из нее «ноль» на выходе. А каскад с общим эмиттером, «перевернув» этот «ноль», опять даст «единицу».


Стрелка цепляется к выходу компаратора (R1 — это R3 из предыдущей схемы). R2, возможно, придется подобрать: если он будет слишком маленьким, то транзистор может сгореть, а если слишком большим — не откроется (можно попробовать 4,7 кОм). При подаче «единицы» в базе транзистора должно быть примерно 0,7 В (для кремния). К R3 тоже есть вопросы, но слишком малым и он не должен быть.


Моделирование. Когда на входе «ноль» (а «ноль» третьей и четвертой схемы — это в нормальном включении «единица»), то на выходе — «единица», светодиод работает. С чего начали, к тому и пришли — «единица» опять стала сама собой.


Теперь, когда на входе «единица», то на выходе «ноль». Вот она, знаменитая инверсия каскада с общим эмиттером!

А если включать нагрузку в коллектор транзистора, то «единицы» и «нули» по входу и выходу будут совпадать.
В общем, простор для творчества — колоссальный.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: