52 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

При какой температуре плавится камень

При какой температуре плавится камень


Малинова Р., Малина Я. Прыжок в прошлое:

Эксперимент раскрывает тайны древних эпох
Пер. с чеш. – М.; Мысль, 1988.
(главы из книги)

Когда плавится камень?
(производство металлов)

Опыты Гиллеса в 1957 году открыли серию экспериментов, посвященных восстановлению руды в различных типах шахтных печей. Уже в первых опытах Иозеф Вильгельм Гиллес доказал, что доисторическая печь шахтной конструкции могла успешно работать, используя естественное движение воздуха на подветренных склонах. Во время одного из тестов он зафиксировал в центре печи температуру от 1280 до 1420 o С, а в пространстве колосника — 250 o С. Результат плавок — 17,4 кг железа, то есть 11,5 процента: шихта состояла из 152 кг бурого железняка и железного блеска и 207 кг древесного угля.

Множество опытных плавок в репликах печей римской эпохи провели в Дании, особенно в Лейре. Выяснилось, что одна удачная плавка может дать 15 кг железа. Для этого датчане должны были использовать 132 кг болотной руды и 150 кг древесного угля, который получили жжением одного куб. м древесины лиственных пород. Плавка продолжалась около 24 часов.

Систематические эксперименты проводятся в Польше в связи с изучением обширного железоделательного ареала, открытого в Свентокшиских горах. Его расцвет относится к поздней римской эпохе (от третьего до четвертого столетия н. э.). Только с 1955 по 1966 год археологи исследовали в Свентокшиских горах 95 металлургических комплексов с более чем 4 тысячами железоплавильных печей. Археолог Казимеж Белении полагает, что общее число таких комплексов в этом ареале составляет 4 тысячи с 300 тысячами печей. Объем их продукции мог достигать 4 тысяч тонн железа рыночного качества. Это огромная цифра, не имеющая аналогов в доисторическом мире.

Истоки упомянутого железоплавильного производства восходят к позднему латену (последнее столетие до н. э.) и раннему римскому периоду, когда металлургические комплексы с десятью или двадцатью печами располагались непосредственно в центре населенного пункта. Их продукция удовлетворяла лишь местные, весьма ограниченные потребности. Начиная со среднего римского периода производство железа стало носить организованный характер, наибольшего подъема оно достигло в III–IV веках. Печи располагались в виде двух прямоугольных отсеков, разделенных штреком для обслуживающего персонала. В каждом из отсеков печи группировались по две, три и даже по четыре. Таким образом, в одном комплексе размещалось несколько десятков печей, однако не были какими-то редкими исключениями и поселения с сотней и даже двумя сотнями печей. Гипотеза о существовании в этот период экспорта железа подтверждена не только количеством металлургических печей с высокой продуктивностью, но и многочисленными находками кладов с тысячами римских монет. В эпоху Великого переселения народов и в раннем средневековье производство снова упало до уровня, отвечавшего местным потребностям.

Предпосылкой возникновения столь массового металлургического производства в римскую эпоху стали достаточные запасы дерева и руды. Металлурги использовали бурый железняк, гематит, а также железный шпат. Некоторые руды они добывали обычным горняцким способом, о чем свидетельствует, например, шахта Сташиц с системой шахтных стволов, штолен и с остатками крепи и инструментов, относящихся к римской эпохе. Впрочем, не гнушались они и болотной рудой. Применялись печи с углубленным подом и надземным стволом, который при выемке железной губки (крицы) приходилось разбивать.

В 1960 году на одной из самых известных стоянок (Нова Слупя) был открыт Музей древней металлургии, неподалеку от которого ежегодно, начиная с 1967 года, в сентябре демонстрируется для широкой публики технология доисторической металлургии. Такая демонстрация начинается с доставки руды из шахты в металлургический комплекс, в котором на разных уровнях размещены железоплавильные печи. Здесь руда размельчается молотами и сушится. Сушка и обогащение руды происходят в обжиговых сооружениях. Такое устройство имеет форму штабеля, образуемого слоями дров, переложенными рудой. Штабель поджигается одновременно со всех сторон. После сгорания высушенную, обожженную и обогащенную руду складывают в кучу, откуда ее берут для загрузки. В окрестностях комплекса находится также рабочее место угольщиков, где показывается производство древесного угля — закладка и возведение штабеля, выжигание, разборка штабеля, транспортировка угля на открытый склад, измельчение и, наконец, использование в печи. Затем следует разогрев печи, монтаж и закладка мехов. Персонал комплекса составляют десять работников — шахтеров, металлургов, угольщиков и подсобных рабочих, которые ведут плавку и одновременно готовят к эксперименту вторую печь. Плавка продолжается приблизительно десять часов и завершается выемкой железной губки из пода, причем предварительно шахту необходимо разбить.

В 1960 году польские и чешские специалисты объединили свои усилия и стали совместно проводить металлургические эксперименты. Они построили две восстановительные печи по образцам римской эпохи. Одна была аналогом типа печи из Свентокшиских гор, вторая соответствовала археологической находке в Лоденицах (Чехия). Для плавки были использованы гематитовая руда и буковый уголь в пропорции один к полутора и один к одному и слабое воздушное дутье. Систематически контролировали и измеряли приток воздуха, температуру и восстановительные газы. Во время эксперимента на аналоге польской печи, которая имела углубленный под и разные шахтные надстройки — высотой в 13, 27 и 43 см, ученые обнаружили, что плавильный процесс сосредоточился у горловин обеих противоположных фурм, где образовывались подвижный шлак и губчатое железо (от 13 до 23 процентов железа и лишь около одного процента металлического железа в каплях в составе нижнего шлака). Температура вблизи фурм достигала 1220-1240 o С.

Подобным же образом процесс протекал и во время опытов в лоденицкой печи: лишь вид шлаковых и железных образований был иной. Температура вблизи фурмы составляла 1360 o С. И в этой реплике была получена железная крица со следами науглероживания. Железная губка образовывалась всегда у горловин фурм, в то время как более легкий шлак протекал сквозь ее поры в под на слой древесного угля. Эффективность в обоих случаях не превышала 17-20 процентов.

Дальнейшие опыты были нацелены на выяснение уровня славянского металлургического производства VIII столетия, остатки которого сохранились в комплексах, открытых в Желеховицах у Уничова в Моравии. Речь шла прежде всего о том, чтобы определить, можно ли было в таких печах изготавливать сталь. Что касается выхода железа и эффективности печи, то это представляло второстепенный интерес, ибо проводившиеся в ходе эксперимента многочисленные измерения неблагоприятно влияли на процесс плавки.

Завалка образовывала плавящийся конус в поду печи, и засыпавшийся следом материал потом автоматически транспортировался к полости за фурмой, где образовывался эпицентр жара, в котором продукт предохранялся от ре-оксидирования нагнетаемым воздухом.

Читать еще:  Как достать болт если сорвана резьба

Важным параметром является объем нагнетаемого в печь воздуха. Если дутье недостаточно, температура слишком низкая. Больший объем воздуха ведет к значительной потере железа, переходящего в шлак. Оптимальный объем вдуваемого воздуха составлял для желеховицкой печи 250-280 л в минуту.

Далее экспериментаторы обнаружили, что при определенных условиях можно даже в примитивных отдельных печах получить высокоуглеродистую сталь и, следовательно, нет нужды в последующем науглероживании. Во время опытов на желеховицком комплексе археологи отметили тот факт, что все печи снабжены за фурмой раковиной. Это пространство они гипотетически приняли за камеру для нагревания и науглероживания крицы, которая там накапливалась сразу после плавки. Высказанную гипотезу они проверили в реплике желеховицкой печи. После шестичасовой плавки гематитовой руды с использованием соснового древесного угля крицу нагрели в восстановительной среде в задней полости печи. Температура в камере составила 1300 o С. Продукт извлекли из печи при красно-белом калении. Шлак протекал через поры губчатой железной массы. Продукт содержал наряду с чистым железом железо науглеро-женное.

Во время новгородской археологической экспедиции в 1961 и 1962 годах были проведены экспериментальные плавки железа в реплике древнерусской надземной шахтовой печи X-XIII веков, хорошо известной как по археологическим, так и по этнографическим источникам. Учитывая то обстоятельство, что просушка печи из глины — а именно из нее были сделаны оригиналы — затянулась бы на несколько недель, экспериментаторы использовали при ее изготовлении сырые глиняные блоки. Зазоры между ними заполнили смазкой из глины и песка. Внутренность печей обмазали приблизительно сантиметровым слоем глины с песком. Печь имела цилиндрическую форму диаметром 105 см и высотой 80 см. Шестидесятисантиметровая дом-ница была размещена в центре цилиндра.

Может ли мрамор плавиться?

Но многие вещи непонятно как сделаны, опустив за скобки плавление мрамора.

Или у “столешникова” проблема с правильным определением минерала, потому что, если то, что он называет “мрамор” вовсе не “мрамор”, а “гранит”- то он плавится, судя по реплике знатока на этом же форуме.

В приципе, можно и отлить в граните, если задаться такой целью.

По температурам ядерного взрыва и воздействию на камни

А ведь тогда хотели взорвать не 50 МТ а все 100 МТ.

Восточно-Иранские горы сложены осадочными породами, гранитоидами и лавами

смешанные, например, вулканогенно-осадочные (см. вулканический туф)

Грани́т ( итал. granito , от лат. granum — зерно) — магматическая глубинная горная порода кислого состава , нормального ряда щёлочности. Состоит из кварца , плагиоклаза , калиевого полевого шпата и слюд — биотита и/или мусковита . Граниты очень широко распространены в континентальной земной коре . Эффузивные аналоги гранитов — риолиты . Плотность гранита — 2600 кг/м³, прочность на сжатие до 300 МПа
Температура плавления 1215—1260 °C ;
при присутствии воды и давления температура плавления значительно снижается — до 650 °C

Основной тип лавы, извергаемый из мантии, характерен для океанических щитовых вулканов. Наполовину состоит из диоксида кремния, наполовину — из оксидов алюминия, железа, магния и других металлов.
Имеет высокую температуру (1200—1300 °C).
Для базальтовых лавовых потоков характерны малая толщина (метры) и большая протяжённость (десятки километров).
Цвет горячей лавы — жёлтый или жёлто-красный.

Наполовину состоит из карбонатов натрия и калия.
Это самая холодная и жидкая лава, она растекается подобно воде. Температура карбонатной лавы всего 510—600 °C.
Цвет горячей лавы — чёрный или тёмно-коричневый, однако по мере остывания становится светлее, а спустя несколько месяцев становится почти белым.
Застывшие карбонатные лавы — мягкие и ломкие, легко растворяются в воде.
Карбонатная лава течёт только из вулкана Олдоиньо-Ленгаи в Танзании.

Наиболее характерна для вулканов Тихоокеанского огненного кольца. Обычно очень вязкая и иногда застывает в жерле вулкана ещё до окончания извержения, тем самым прекращая его. Закупоренный пробкой вулкан может несколько вздуться, а затем извержение возобновляется, как правило, сильнейшим взрывом. Средняя скорость потока такой лавы — несколько метров в день, а температура — 800—900 °C. Она содержит 53-62 % диоксида кремния (кремнезёма). Если его содержание достигает 65 %, то лава становится очень вязкой и медленной. Цвет горячей лавы — тёмный или чёрно-красный. Застывшие кремниевые лавы могут образовать вулканическое стекло чёрного цвета. Подобное стекло получается, когда расплав быстро остывает, не успевая

Мрамор (др.-греч. μάρμαρος — «белый или блестящий камень») — метаморфическая горная порода, состоящая только из кальцита CaCO3. При перекристаллизации доломита CaMg(CO3)2 образуются доломитовые мраморы.
Образование мрамора — результат так называемого процесса метаморфизма: под воздействием определённых физико-химических условий структура известняка (осадочная горная порода органического происхождения) меняется, и в итоге рождается мрамор.
В строительной практике «мрамором» называют метаморфические породы средней твёрдости, принимающие полировку (мрамор, мраморизованный известняк , плотный доломит, карбонатные брекчии и карбонатные конгломераты ).

До сих пор словом `мрамор` называют разные породы, схожие меж собой. Строители именуют мрамором любой прочный, поддающийся полировке известняк. Иногда за мрамор принимают похожую породу серпентинит. Истинный мрамор на светлом изломе напоминает сахар.

О добыче мрамора в Иране- таки да, добывают:
Мы с удовольствием представляем нашу корпорацию «Omarani Yazdbaf» – это известная корпорация по добыче камня. Наша компания ведет добычу оникса (светло-зеленый, белый), мрамора (кремовый, оранжевый, красный, розовый, желтый) и травертина (шоколадный, коричневый

В общем, так ничего и непонятно- кто залез на гору и для чего выбил в горе рельеф.

Плавление алмазов: температура и эффект

О том, в какое вещество переходит алмаз при плавлении, ученые спорят до сих пор. С XVI века, момента обнаружения минерала, ведется его активное изучение. Но, до сих пор не разгаданы многие тайны. За более чем 500 лет было проведено множество экспериментов в стремлении ученых разгадать эту загадку. Но большинство свойств камня все еще остаются неизученными. Каждое открытие занимает многие годы. В нашей статье, мы приоткроем для вас одну из завес, за которой скрывается много интересного.

О базовых свойствах

От того, при какой температуре плавится алмаз, зависит возможность его применения и в ювелирной отрасли, и в промышленности. Но характеристика пока не изучена в полном объеме, так как камень имеет уникальные свойства. Его сложно сравнить с чем-либо, из известного миру.

Одно из объяснений столь необычных характеристик минерала – его внеземное происхождение. Есть теория, что алмаз попал на планету из космоса вместе с метеоритами и осел в недрах земли. Другие ученые, объясняют странное поведение камня строением его кристаллической решетки.

Читать еще:  Переделка шуруповерта 18в на литий

Атомы углерода в нем имеют сверхпрочную связь, что обуславливает уже известные свойства алмаза:

  • аномальную твердость;
  • устойчивость к агрессивной химической среде (щелочи и кислоты);
  • хрупкость.

Парадокс алмаза в том, что, с одной стороны, это самый прочный минерал на планете. Но с другой — он очень хрупкий и его легко повредить сильным ударом. Последнее свойство ювелиры используют при огранке.

Интересные свойства, изученные в ходе экспериментов

Алмаз — самый удивительный камень. Его природа и свойства заставляют самых умных людей планеты решать наисложнейшие задачи. Его красота восхищает миллионы. Это один из лучших диэлектриков и изоляторов. В его состав входят только атомы углерода.

Любопытно, что сам углерод – крайне горючее вещество. В природе, он чаще встречается в форме графита. Это натолкнуло ученых на идею преобразования одного вещества в другое. Их интересовало, будет ли в процессе расплавления алмаз переходить в графит и наоборот. Результаты получились неоднозначными.

Выяснилось, что создать из алмаза графит возможно, нагрев кристалл до 2000 градусов и перекрыв доступ кислорода. А вот провести обратную реакцию, не изготавливая затравку, так и не удалось. Об этом вы можете прочитать в статье «Об искусственных алмазах и бриллиантах». Если же камень нагревать не в вакууме, он просто превратится в углерод.

Переход из одного состояния в другое

По температуре и среде в плавильной печи, можно спрогнозировать, в какое состояние перейдет алмаз. Если в колбе присутствует кислород, то камень полностью сгорит при температуре 850-1000 градусов Цельсия. Во время реакции будет выделяться бледно-синее пламя. По окончанию эксперимента, в капсуле останется CO2 – кислород и углерод.

Доказать это удалось еще в 1694 году итальянским ученым, Тарджони и Аверани. Они старались сплавить два небольших бриллианта в один, но только сожгли камни.

Их эксперимент провалился потому, что добиться плавного расплавления алмазов невероятно сложно: необходима капсула без кислорода, с возможностью регулирования давления внутри нее.

То, в какое вещество переходят алмазы, нагретые до 2000-3000 градусов, зависит от окружающей среды. Если перекрыть кислород и создать температуру в 1800-2000 градусов, можно получить графит. Подняв уровень тепла до 3700-4000 градусов в тех же условиях, можно получить расплавленный углерод. Но добиться от лабораторных приборов таких мощностей крайне сложно.

Ход эксперимента и его результаты

Чтобы определить, при какой температуре плавится алмаз, в 2010 году был проведен большой эксперимент. Камень размером в 1/10 карата был помещен в специальную капсулу, где создавались волновые наносекундные импульсы. В печи было достигнуто давление в 10 млн атмосфер и температура 40000 по Кельвину (39726,85 по Цельсию), после чего кристалл перешел в жидкое состояние.

На этом эксперимент не завершился. Ученые продолжили поднимать температуру и давление. Когда жар достиг 50000 Кельвинов (49726,85 Цельсия), алмаз начал затвердевать. Причем, делал это буквально кусками – на поверхности расплавленной массы образовывались твердые кристаллы.

Конструкция напоминала айсберг. Любопытно, что расплавленная масса не кипела и не изменялась, когда ученые продолжили повышать температуру. Но с понижением градусов и при сохранении давления кристаллы становились больше и срастались в один.

Феномены и научные факты

Не только плавление алмаза интересовало ученых. В ходе одного из экспериментов по превращению камня в углекислый газ, произошло интересное открытие. При воздействии на кристалл мощными ультрафиолетовыми лучами в минерале образовалась полость.

Удалось выяснить, что ультрафиолет вредит алмазу. Но у владельцев украшений с бриллиантом это не должно вызывать беспокойства. Пройдут десятки тысяч лет, прежде чем солнечные лучи смогут навредить вашим драгоценностям.

Многие загадки алмаза ученые так и не смогли разгадать. Например, в ювелирных мастерских камень легко поддается нагреванию, обработке и пайке. Правда, если в бриллианте присутствуют трещины, он разлетится на маленькие осколки.

Лава и углеродные кристаллы

Из-за того, что бриллиантовые месторождения находятся в кимберлитовых трубках – месте выхода вулканической породы на поверхность, возникают закономерные опасения. Может ли лава расплавить алмаз? Ответ однозначный – нет.

Дело в том, что температура плавления алмаза свыше 3500 градусов. Да и давление необходимо не шуточное, более 11 гПа. Жар лавы – всего 500-1200 градусов. Простым сравнением приходим к выводу, что потоки лавы могут лишь сжечь минерал, если достигнут 1000 градусов.

Интересно, что в 2013 году алмазы были обнаружены в лаве действующего вулкана. Для ученых это стало очередной загадкой, связанной с минералами. Проведя исследования, они сошлись во мнении, что минерал образовался в результате «шоковой кристаллизации». Ее причиной стал грозовой электрический разряд.

Если вам есть что добавить по теме – пишите комментарии.

Сделайте репост, чтобы и ваши друзья узнали новые интересные факты.

При какой температуре плавится камень


Малинова Р., Малина Я. Прыжок в прошлое:

Эксперимент раскрывает тайны древних эпох
Пер. с чеш. – М.; Мысль, 1988.
(главы из книги)

Когда плавится камень?
(производство металлов)

Опыты Гиллеса в 1957 году открыли серию экспериментов, посвященных восстановлению руды в различных типах шахтных печей. Уже в первых опытах Иозеф Вильгельм Гиллес доказал, что доисторическая печь шахтной конструкции могла успешно работать, используя естественное движение воздуха на подветренных склонах. Во время одного из тестов он зафиксировал в центре печи температуру от 1280 до 1420 o С, а в пространстве колосника — 250 o С. Результат плавок — 17,4 кг железа, то есть 11,5 процента: шихта состояла из 152 кг бурого железняка и железного блеска и 207 кг древесного угля.

Множество опытных плавок в репликах печей римской эпохи провели в Дании, особенно в Лейре. Выяснилось, что одна удачная плавка может дать 15 кг железа. Для этого датчане должны были использовать 132 кг болотной руды и 150 кг древесного угля, который получили жжением одного куб. м древесины лиственных пород. Плавка продолжалась около 24 часов.

Систематические эксперименты проводятся в Польше в связи с изучением обширного железоделательного ареала, открытого в Свентокшиских горах. Его расцвет относится к поздней римской эпохе (от третьего до четвертого столетия н. э.). Только с 1955 по 1966 год археологи исследовали в Свентокшиских горах 95 металлургических комплексов с более чем 4 тысячами железоплавильных печей. Археолог Казимеж Белении полагает, что общее число таких комплексов в этом ареале составляет 4 тысячи с 300 тысячами печей. Объем их продукции мог достигать 4 тысяч тонн железа рыночного качества. Это огромная цифра, не имеющая аналогов в доисторическом мире.

Истоки упомянутого железоплавильного производства восходят к позднему латену (последнее столетие до н. э.) и раннему римскому периоду, когда металлургические комплексы с десятью или двадцатью печами располагались непосредственно в центре населенного пункта. Их продукция удовлетворяла лишь местные, весьма ограниченные потребности. Начиная со среднего римского периода производство железа стало носить организованный характер, наибольшего подъема оно достигло в III–IV веках. Печи располагались в виде двух прямоугольных отсеков, разделенных штреком для обслуживающего персонала. В каждом из отсеков печи группировались по две, три и даже по четыре. Таким образом, в одном комплексе размещалось несколько десятков печей, однако не были какими-то редкими исключениями и поселения с сотней и даже двумя сотнями печей. Гипотеза о существовании в этот период экспорта железа подтверждена не только количеством металлургических печей с высокой продуктивностью, но и многочисленными находками кладов с тысячами римских монет. В эпоху Великого переселения народов и в раннем средневековье производство снова упало до уровня, отвечавшего местным потребностям.

Читать еще:  Для прошивки бумаг станок

Предпосылкой возникновения столь массового металлургического производства в римскую эпоху стали достаточные запасы дерева и руды. Металлурги использовали бурый железняк, гематит, а также железный шпат. Некоторые руды они добывали обычным горняцким способом, о чем свидетельствует, например, шахта Сташиц с системой шахтных стволов, штолен и с остатками крепи и инструментов, относящихся к римской эпохе. Впрочем, не гнушались они и болотной рудой. Применялись печи с углубленным подом и надземным стволом, который при выемке железной губки (крицы) приходилось разбивать.

В 1960 году на одной из самых известных стоянок (Нова Слупя) был открыт Музей древней металлургии, неподалеку от которого ежегодно, начиная с 1967 года, в сентябре демонстрируется для широкой публики технология доисторической металлургии. Такая демонстрация начинается с доставки руды из шахты в металлургический комплекс, в котором на разных уровнях размещены железоплавильные печи. Здесь руда размельчается молотами и сушится. Сушка и обогащение руды происходят в обжиговых сооружениях. Такое устройство имеет форму штабеля, образуемого слоями дров, переложенными рудой. Штабель поджигается одновременно со всех сторон. После сгорания высушенную, обожженную и обогащенную руду складывают в кучу, откуда ее берут для загрузки. В окрестностях комплекса находится также рабочее место угольщиков, где показывается производство древесного угля — закладка и возведение штабеля, выжигание, разборка штабеля, транспортировка угля на открытый склад, измельчение и, наконец, использование в печи. Затем следует разогрев печи, монтаж и закладка мехов. Персонал комплекса составляют десять работников — шахтеров, металлургов, угольщиков и подсобных рабочих, которые ведут плавку и одновременно готовят к эксперименту вторую печь. Плавка продолжается приблизительно десять часов и завершается выемкой железной губки из пода, причем предварительно шахту необходимо разбить.

В 1960 году польские и чешские специалисты объединили свои усилия и стали совместно проводить металлургические эксперименты. Они построили две восстановительные печи по образцам римской эпохи. Одна была аналогом типа печи из Свентокшиских гор, вторая соответствовала археологической находке в Лоденицах (Чехия). Для плавки были использованы гематитовая руда и буковый уголь в пропорции один к полутора и один к одному и слабое воздушное дутье. Систематически контролировали и измеряли приток воздуха, температуру и восстановительные газы. Во время эксперимента на аналоге польской печи, которая имела углубленный под и разные шахтные надстройки — высотой в 13, 27 и 43 см, ученые обнаружили, что плавильный процесс сосредоточился у горловин обеих противоположных фурм, где образовывались подвижный шлак и губчатое железо (от 13 до 23 процентов железа и лишь около одного процента металлического железа в каплях в составе нижнего шлака). Температура вблизи фурм достигала 1220-1240 o С.

Подобным же образом процесс протекал и во время опытов в лоденицкой печи: лишь вид шлаковых и железных образований был иной. Температура вблизи фурмы составляла 1360 o С. И в этой реплике была получена железная крица со следами науглероживания. Железная губка образовывалась всегда у горловин фурм, в то время как более легкий шлак протекал сквозь ее поры в под на слой древесного угля. Эффективность в обоих случаях не превышала 17-20 процентов.

Дальнейшие опыты были нацелены на выяснение уровня славянского металлургического производства VIII столетия, остатки которого сохранились в комплексах, открытых в Желеховицах у Уничова в Моравии. Речь шла прежде всего о том, чтобы определить, можно ли было в таких печах изготавливать сталь. Что касается выхода железа и эффективности печи, то это представляло второстепенный интерес, ибо проводившиеся в ходе эксперимента многочисленные измерения неблагоприятно влияли на процесс плавки.

Завалка образовывала плавящийся конус в поду печи, и засыпавшийся следом материал потом автоматически транспортировался к полости за фурмой, где образовывался эпицентр жара, в котором продукт предохранялся от ре-оксидирования нагнетаемым воздухом.

Важным параметром является объем нагнетаемого в печь воздуха. Если дутье недостаточно, температура слишком низкая. Больший объем воздуха ведет к значительной потере железа, переходящего в шлак. Оптимальный объем вдуваемого воздуха составлял для желеховицкой печи 250-280 л в минуту.

Далее экспериментаторы обнаружили, что при определенных условиях можно даже в примитивных отдельных печах получить высокоуглеродистую сталь и, следовательно, нет нужды в последующем науглероживании. Во время опытов на желеховицком комплексе археологи отметили тот факт, что все печи снабжены за фурмой раковиной. Это пространство они гипотетически приняли за камеру для нагревания и науглероживания крицы, которая там накапливалась сразу после плавки. Высказанную гипотезу они проверили в реплике желеховицкой печи. После шестичасовой плавки гематитовой руды с использованием соснового древесного угля крицу нагрели в восстановительной среде в задней полости печи. Температура в камере составила 1300 o С. Продукт извлекли из печи при красно-белом калении. Шлак протекал через поры губчатой железной массы. Продукт содержал наряду с чистым железом железо науглеро-женное.

Во время новгородской археологической экспедиции в 1961 и 1962 годах были проведены экспериментальные плавки железа в реплике древнерусской надземной шахтовой печи X-XIII веков, хорошо известной как по археологическим, так и по этнографическим источникам. Учитывая то обстоятельство, что просушка печи из глины — а именно из нее были сделаны оригиналы — затянулась бы на несколько недель, экспериментаторы использовали при ее изготовлении сырые глиняные блоки. Зазоры между ними заполнили смазкой из глины и песка. Внутренность печей обмазали приблизительно сантиметровым слоем глины с песком. Печь имела цилиндрическую форму диаметром 105 см и высотой 80 см. Шестидесятисантиметровая дом-ница была размещена в центре цилиндра.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: