55 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы диода и транзистора

Устройство и принцип работы диода

Диод — простейший полупроводниковый прибор, который можно встретить сегодня на печатной плате любого электронного устройства. В зависимости от внутренней структуры и технических характеристик, диоды классифицируются на нескольких видов: универсальные, выпрямительные, импульсные, стабилитроны, туннельные диоды и варикапы. Они применяются для выпрямления, ограничения напряжения, детектирования, модуляции и т. д. – в зависимости от назначения устройства, в котором применяются.

Основа диода — p-n-переход, сформированный полупроводниковыми материалами с двумя разными типами проводимости. К кристаллу диода присоединены два вывода, называемые катод (минусовой электрод) и анод (плюсовой электрод). На стороне анода находится область полупроводника p-типа, а на стороне катода — область n-типа. Данное устройство диода обеспечивает ему уникальное свойство — он проводит ток лишь в одном (прямом) направлении, от анода — к катоду. В обратном направлении обычный исправный диод ток не проводит.

В области анода (p-типа), основными носителями заряда являются положительно заряженные дырки, а в области катода (n-типа) — отрицательно заряженные электроны. Выводы диода представляют собой контактные металлические поверхности к которым и припаяны выводы.

Когда диод проводит ток в прямом направлении, это значит что он находится в открытом состоянии. Если ток через p-n-переход не идет, значит диод закрыт. Таким образом, диод может находиться в одном из двух устойчивых состояний: или открыт или закрыт.

Включив диод в цепь источника постоянного напряжения, анодом к плюсовой клемме, а катодом – к минусовой, получим смещение p-n-перехода в прямом направлении. И если напряжение источника окажется достаточным (для кремниевого диода хватит 0,7 вольт), то диод откроется и начнет проводить ток. Величина этого тока будет зависеть от величины приложенного напряжения и от внутреннего сопротивления диода.

Почему диод перешел в проводящее состояние? Потому что при правильном включении диода, электроны из n-области, под действием ЭДС источника, устремились к его положительному электроду, навстречу дыркам из p-области, которые теперь движутся в сторону отрицательного электрода источника, навстречу электронам.

На границе областей (на самом p-n-переходе) в это время происходит рекомбинация электронов и дырок, их взаимное поглощение. А источник вынужден непрерывно поставлять новые электроны и дырки в область p-n-перехода, увеличивая их концентрацию.

А что случится если диод включить наоборот, катодом к плюсовой клемме источника, а анодом — к минусовой?Дырки и электроны разбегутся в разные стороны — к выводам — от перехода, и в окрестности перехода возникнет зона обедненная носителями заряда — потенциальный барьер. Ток обусловленный основными носителями заряда (электронами и дырками) попросту не возникнет.

Но кристалл диода не идеален, в нем кроме основных носителей заряда присутствуют еще и неосновные носители заряда, которые и создадут очень незначительный обратный ток диода, измеряемый микроамперами. Но диод в данном состоянии закрыт, так как p-n-переход его смещен в обратном направлении.

Напряжение, при котором диод переходит из закрытого состояния в открытое, называется прямым напряжением диода (смотрите – Основные параметры диодов), которое по сути является падением напряжения на p-n-переходе. Сопротивление диода току в прямом направлении не постоянно, оно зависит от величины тока через диод и имеет размер порядка единиц Ом. Напряжение обратной полярности, при котором диод закрывается, называется обратным напряжением диода. Обратное сопротивление диода в этом состоянии измеряется тысячами Ом.

Очевидно, диод может переходить из открытого состояния в закрытое и обратно при смене полярности приложенного к нему напряжения. На данном свойстве диода основана работа выпрямителя. Так, в цепи синусоидального переменного тока диод будет проводить ток лишь во время положительной полуволны, а во время отрицательной — будет заперт.

Принцип работы диода и транзистора

Привет всем читателям “Радиосхем“, меня зовут Дима и сегодня я расскажу простыми словами о полупроводниках и их свойствах, а также о транзисторах и диодах. Итак, приступим, для начала вспомните, какие вы элементы электроники встречали? И их принцип работы? Если вы начали сразу изучать диоды и транзисторы, то у вас возникнет много вопросов. Поэтому лучше начать с закона Ома, а потом приступить к более простым конструкциям. Транзисторы и диоды – не очень простые элементы, обладающие свойством полупроводника.

Вы знаете как работает простой проводник – ничего сложного. Электроны с большой скоростью проходят через атом, сталкиваясь с ними. При этом возникает сопротивление, вы уже встречали это слово, конечно встречали. Вот лучший друг сопротивления называется резистор. Резистор – это пассивный элемент, обладающей бОльшим сопротивлением, чем обычный проводник. Ладно, идём дальше, нам надо узнать что же представляет из себя полупроводник? У полупроводника в атомной связи есть лишние электроны, их называют свободными электронами, и есть дырки. Дырки – это пустые места, в которых должны находиться электроны. На рисунке 1, изображено внутреннее строение межатомных связей полупроводника.

Рисунок 1. Внутреннее строение межатомных связей полупроводника.

Теперь разберёмся – как полупроводник пропускает ток. Представим, что мы подключили полупроводник к гальваническому элементу, например к обычной батарее. Ток начинает двигаться от плюса к минусу. При тепловых явлениях электроны проходящие через полупроводник начинают выхватывать из межатомных связей электроны. Происходят дырки, а свободные электроны сопровождаются проходящими электронами гальванического элемента. Те же электроны, которые попадут на дырку, как бы впрыгнут в неё, восстановив межатомную связь. Проще говоря в полупроводнике при поступлении на него тока нарушаются межатомные связи, электроны вылетают и становятся свободным, другие заполняют дырки, встретив на их пути. И этот процесс происходит бесконечно. На рисунке 2 показано движение электронов.

Рисунок 2. Движение и направление электронов и дырок.

Полупроводниковые диоды

Итак, мы разобрались что из себя представляет полупроводник и какой у него принцип работы. Теперь приступим к диодам, не самым простейшим радиоэлектронным элементам. Выше уже говорил про p-n переход. Теперь подробней: p – это positive (позитив, положительный), n – negative (негатив, отрицательный). Давайте разберёмся как движутся электроны в диоде. Представим, если мы подключим гальванический элемент, например батареи так, чтоб была полярность. Ах да – мы же не разобрались в полярности. Мы уже знаем структуру диода: p-n переход, p – положительный является анодом, n – отрицательный является катодом. На корпусе диода есть тоненькая белая полоска – она чаще всего является катодом, её присоединяют к минусу, а другой вывод является анодом, который присоединяется к плюсу. Теперь разберёмся с движение электронов. Мы присоединили полярно выводы диода, теперь возникает ток. Электроны положительной области начинают двигаться к минусу батареи, а электроны отрицательной области начинают двигаться к плюсу, они встречаются друг с другом, электроны как бы впрыгивают в дырки, в результате и те и другие прекратили своё существование. Эта электропроводность называется электроно-дырочной электропроводностью, электроны движутся с небольшим сопротивлением, показано на рисунке 3 (А). Этот ток называется прямым током Iпр, а что же будет если поменять полярность так, чтобы анод был соединён с минусом, а катод с плюсом. Что же будет происходить? Положительная область, короче дырки начнут двигаться к минусу батареи, а свободные электроны к плюсу, в результате возникнет большая область, она заштрихована на рисунке 3 (Б). Этот ток называется обратным, обладающим очень большим сопротивлением, превышающим несколько сотен Ом, килоом и даже мегаом.

Читать еще:  Как правильно точить японские ножи

Итак, разобрались с p-n переходом, давайте теперь поговорим о предназначении диода. Диоды используются для детекторных приёмников, чтобы из переменного тока создавать пульсирующий постоянный. А что такое вообще переменный ток? Давайте вспоминать. Переменный ток – это ток который способен менять своё направление в течении каждого полупериода, единицы времени. Как же диод сможет сделать из переменного тока пульсирующий? А вот как: вы же помните, что диод пропускает ток только в одну сторону.

Рисунок 3. Движение электронов обратного и прямого тока в диоде.

Когда ток начинает двигаться от плюса к минусу, проходит прямой ток, спокойно без большого сопротивления, но когда ток начинает двигаться от минуса к плюсу, то возникает обратный ток, который диод не пропускает. Вы наверняка видели график переменного напряжения, такая волнистая линия – сунусоида. Если прикрыть нижнюю линию, то получиться пульсирующий ток. Значит диод как бы отсёк нижнею часть. Ток будет двигаться только в одну сторону – это от плюса к минусу. Разобрались? Тогда теперь приступим к транзисторам.

Биополярные и полевые транзисторы

Итак, мы подошли к биополярным и полевым транзисторам. Мы изучим только биополярные транзисторы, а полевые пока не будем трогать – отложим для следующего занятия. Биополярные транзисторы ещё иногда называют простыми. В общем мы уже изучили полупроводники и их свойства, а также диод и p-n переход. Теперь подошли к более сложной структуре. Структуре? Думаете что же это, мы уже изучили структуру диода. Напомним, что структура – это несколько полупроводников обладающим либо дырочной проводимостью, либо электронной проводимостью, вот эта структура знакома как p-n переход. У простого (биполярного) транзистора есть две структуры. Это p-n-p структура и n-p-n структура. А вы же не изучили выводы. Ну конечно, в простом транзисторе как и в полевом три вывода. Только у обычного транзистора другие название выводов и другой принцип работы. Ладно, давайте рассмотрим p-n-p структуру. Первый вывод это база, обладающая управляющим током, второй вывод – эмиттер, взаимодействует с базой, и третий вывод – коллектор, с него снимается повышенный ток. Теперь определим где какой вывод и к какой области он относиться. Первый вывод база, она принадлежит к электронной области, то есть “n”, дальше эмиттер – принадлежит к положительному выводу который слева от базы, и коллектор принадлежит к положительному выводу, который справа от базы.

Итак, разберёмся с принципом работы транзистора. Если ток направить на эмиттер и на базу, то получиться p-n переход, там произойдёт избыток электронов, в результате коллектор соберёт этот сильный поток электронов и ток будет усиленный. Я забыл сказать – транзистор как и диод может находиться в двух состояниях: закрытом и открытом. Всё, мы разобрались с транзисторами и диодами, рисунок двух структур p-n-p и n-p-n показан ниже.

Рисунок 4. Две структуры транзистора: p-n-p и n-p-n.

На этом статья закончена, если что-то не понятно – обращайтесь, расскажу и отвечу. Всем пока. С вами был Дмитрий Цывцын.

Принцип работы диода – это очень просто

Диоды очень широко применяются в электронике. Практически они являются неотъемлемой частью почти любого электронного устройства. Потому любому человеку полезно примерно представлять как функционирует диод. Для общего развития.

Чтобы объяснить принцип по которому работает диод нужно пользоваться некоторыми понятиями и определениями. Это не значит что нужно понимать эти определения досконально. Потому как все определения постоянно, на протяжении времени, дополняются. А то и вовсе полностью изменяются. Все обозначения применяются только для простоты объяснения. Не стоит думать, что кто-то, более умный чем вы, понимает что такое электроны. А также знает, как они ведут себя в полупроводниках. Самое главное, понимать как можно практически использовать характеристики полупроводников в различных условиях.

Пояснение работы кремниевого диода

При изготовлении диодов применяются полупроводниковые материалы. Например, такой полупроводник как кремний. Работа диода основана на понятии движения свободных носителей зарядов. Однако, считается что чистый кремний не имеет свободных носителей. И это не практично при изготовлении диодов. Потому, для диодов применяют кремний с добавками. В единый кристалл кремния добавляют примеси. То есть легируют кремний. С одной стороны диода, кремний легирован донорной примесью. То есть это отдающая сторона – донор. Эта область обладает проводимостью n-типа. От английского слова negative – отрицательная (минус). Считается что на n-стороне находятся свободные электроны. Эта область имеет малое удельное сопротивление электрическому току.

С другой стороны диод легирован акцепторной примесью. То есть это принимающая сторона – акцептор. Эта область обладает проводимостью p-типа. От английского слова positive – положительная (плюс). Считается что на p-стороне находятся свободные места для электронов (дырки). Эта область также обладает малым сопротивлением электрическому току. На границе p-n-перехода происходит явление рекомбинации. В переводе с латыни означает “соединение”. Другими словами, исчезновение пары свободных носителей противоположного заряда в среде с выделением энергии.

Считается что электроны n-стороны стремятся занять дырки с p-стороны. А дырки наоборот стремятся перетечь на n-сторону. Для того чтобы их место заняли электроны. При этом возникает диффузный ток. Другими словами, электроны и дырки хаотично перетекают в противоположные стороны. Соединяются друг с другом. И свободные носители исчезают.

Читать еще:  Как самому сделать заземление на даче

Обедненная область полупроводникового диода

В итоге, посередине диода образуется обедненная область. То есть в этой области нет ни свободных электронов, ни дырок. Или, по крайней мере, их очень мало. Все свободные носители уже заняли свои места. Причем, граница p-стороны имеет слабый отрицательный заряд. А граница n-стороны положительный. Потому как электроны и дырки перенесли свои заряды на противоположную сторону.

В результате изменения знаков зарядов на границе образуется электрическое поле. Это поле вызывает дрейфовый ток. Он протекает в сторону противоположную диффузному. Через некоторое время между двумя противоположными течениями устанавливается равновесие. Дальнейшее перемещение электронов и дырок прекращается. На границе областей образуется потенциальный барьер. На этом узком участке большое удельное сопротивление электрическому току.

Для того чтобы преодолеть этот барьер нужно приложить к нему определенное напряжение. Для кремниевого диода оно составляет примерно 0,7 вольта. При приложении такого напряжения к потенциальному барьеру, равновесие нарушится. И движение электронов и дырок возобновится. Однако, многое зависит от того, как именно подключить контакты источника питания к выводам диода.

Обратное подключение диода

Подключим к диоду источник постоянного тока. То есть к p-стороне подключим минусовой контакт источника тока. А к n-стороне плюсовой контакт этого же источника. Источник питания обязательно подключается через нагрузку. Чтобы не было короткого замыкания.

Считается что частицы с разными зарядами взаимно притягиваются. А с одинаковыми отталкиваются. Потому можно применить нижеуказанные сравнения. Отрицательно заряженные электроны со стороны катода, как-бы притягиваются положительными зарядами источника питания. С другой стороны, со стороны анода, отрицательные заряды источника питания как бы притягивают положительно заряженные дырки. Свободных носителей заряда, в средней зоне диода, остается незначительное количество. В результате, ширина потенциального барьера в данном случае увеличивается. Удельное сопротивление этого узкого участка растет. Этот участок практически превращается в диэлектрик. То есть, протекание тока через него почти невозможно. Это состояние называется обратным смещением диода. Или же обратное включение диода.

Прямое подключение диода

Подключим источник постоянного тока к противоположным выводам диода. То есть плюс источника тока присоединить к p-стороне диода. Минус источника питания к n-стороне. Ситуация изменится. Предположим, что источник тока имеет напряжение достаточное для того, чтобы преодолеть потенциальный барьер. После этого электроны и дырки будут как бы притягиваться к питающим клеммам источника тока. На противоположные стороны диода. Когда электроны пересекают барьер, то теряют энергию и заменяют дырки в акцепторной области. Дырки напротив перемещаются в донорную область и там замещаются электронами. Свободных носителей много. Обедненной области нет. Потенциальный барьер практически исчезает. Сопротивление пограничного участка становится очень маленьким. Ток повышается. Данное явление называется прямым смещением диода. Или же прямое включение диода.

Давайте будем изменять входное напряжение и посмотрим как это скажется на диоде. При напряжении обратного подключения через диод будет течь электрический ток небольшой силы. В условиях прямого подключения до 0,7 вольта, мы также будем наблюдать только незначительный электрический ток. Но сразу же после повышения напряжения до значений достаточных для преодоления потенциального барьера мы увидим резкое увеличение тока.

Если приложить к диоду очень высокое напряжение при обратном подключении, то это повредит обычные диоды. При повреждении диоды ведут себя различно. К примеру, они могут начать хорошо проводить ток в обоих направлениях. Или же почти перестают проводить ток в обе стороны. Иногда, при определенных обстоятельствах, поврежденные диоды могут даже самовосстанавливаться .

Диод – полупроводниковый прибор с односторонней проводимостью. То есть, диод работает как клапан одностороннего действия для электрического тока. Это позволяет использовать диоды разными интересными способами. Например, в выпрямительном мосте, для выпрямления переменного тока. Выпрямительный диодный мост – это устройство из четырех диодов. Диоды располагаются в схеме определенным образом.

С одной стороны к диодному мосту подключается источник переменного тока. С другой стороны к нему подключается нагрузка, требующая питания током постоянным. Как известно, переменный ток частотой 50 Герц 100 раз в секунду меняет свое направление течения. Во время положительного полупериода он течет в одном направлении. И в это время проходимость в цепи будет такой как показано на схеме. Ток будет проходить по двум диодам находящимся в положении прямого смещения. Два других диода будут находиться в состоянии обратного смещения.

Во время отрицательного полупериода произойдет обратное. Таким образом мы получим ток такого же направления на выходе. В результате, через нагрузку в любом случае ток будет течь только в одном направлении. То есть мы получим выпрямленный пульсирующий ток. Мы можем обеспечить еще большее выпрямление на выходе добавив емкостный фильтр и регулятор напряжения.

Существует очень большое количество различных видов диодов. Мы постараемся рассмотреть все случаи их применения на практике. А также исключения из правил. И другие интересные подробности.

Для вашего удобства подборка похожих публикаций

Спасибо за посещение канала и чтение заметки

Вы можете подписаться на канал и поставить лайк. Если хотите больше похожих материалов в ленте Яндекс Дзен

Полупроводниковые диоды и триоды (транзисторы)

Односторонняя проводимость контактов двух полупроводников (или металла с полупроводником) используется для выпрямления и преобразования переменных токов. Если имеется один электронно-дырочный переход, то его действие аналогично действию двухэлектродной лампы — диода (см.§ 105). Поэтому полупроводниковое устройство, содержащее один р-n-переход, называется полупроводниковым (кристаллическим) диодом. Полупроводниковые диоды по конструкции делятся на точечныеи плоскостные.

Рис. 339 Рис. 340

В качестве примера рассмотрим точечный германиевый диод (рис.339), в котором тонкая вольфрамовая проволока 1 прижимается к n-германию 2 острием, покрытым алюминием. Если через диод в прямом направлении пропустить кратковременный импульс тока, то при этом резко повышается диффузия А1 в Ge и образуется слой германия, обогащенный алюминием и обладающий р-проводимостью. На границе этого слоя образуется р-n-переход, обладающий высоким коэффициентом выпрямления. Благодаря малой емкости контактного слоя точечные диоды применяются в качестве детекторов (выпрямителей) высокочастотных колебаний вплоть до сантиметрового диапазона длин волн.

Читать еще:  Скребок для мотоблока своими руками

Принципиальная схема плоскостного меднозакисного (купроксного) выпрямителя дана на рис. 340. На медную пластину с помощью химической обработки наращивается слой закиси меди Сu2О, который покрывается слоем серебра. Серебряный электрод служит только для включения выпрямителя в цепь. Часть слоя Сu2О, прилегающая к Сu и обогащенная ею, обладает электронной проводимостью, а часть слоя Сu2О, прилегающая к Ag и обогащенная (в процессе изготовления выпрямителя) кислородом,— дырочной проводимостью. Таким образом, в толще закиси меди образуется запирающий слой с пропускным направлением тока от Сu2О к Сu ( ).

Технология изготовления германиевого плоскостного диода описана в § 249 (см. рис.325). Распространенными являются также селеновые диоды и диоды на основе арсенида галлия и карбида кремния. Рассмотренные диоды обладают целым рядом преимуществ по сравнению с электронными лампами (малые габаритные размеры, высокие к. п. д. и срок службы, постоянная готовность к работе и т. д.), но они очень чувствительны к температуре, поэтому интервал их рабочих температур ограничен (от –70 до +120°С). р-n-Переходы обладают не только прекрасными выпрямляющими свойствами, но могут быть использованы также для усиления, а если в схему ввести обратную связь, то и для генерирования электрических колебаний. Приборы, предназначенные для этих целей, получили название полупроводниковых триодов или транзисторов (первый транзистор создан в 1949 г. американскими физиками Д. Бардином, У. Браттейном и У. Шокли; Нобелевская премия 1956 г.).

Для изготовления транзисторов используются германий и кремний, так как они характеризуются большой механической прочностью, химической устойчивостью и большей, чем в других полупроводниках, подвижностью носителей тока. Полупроводниковые триоды делятся на точечные и плоскостные. Первые значительно усиливают напряжение, но их выходные мощности малы из-за опасности перегрева (например, верхний предел рабочей температуры точечного германиевого триода лежит в пределах 50 — 80°С). Плоскостные триоды являются более мощными. Они могут быть типа р-п-р и типа п-р-п в зависимости от чередования областей с различной проводимостью.

Для примера рассмотрим принцип работы плоскостного триода р-п-р, т. е. триода на основе n-полупроводника (рис. 341). Рабочие «электроды» триода, которыми являются база (средняя часть транзистора), эмиттер и коллектор (прилегающие к базе с обеих сторон области с иным типом проводимости), включаются в схему с помощью невыпрямляющих контактов — металлических проводников. Между эмиттером и базой прикладывается постоянное смещающее напряжение в прямом направлении, а между базой и коллектором — постоянное смещающее напряжение в обратном направлении. Усиливаемое переменное напряжение подается на входное сопротивление , а усиленное — снимается с выходного сопротивления

Протекание тока в цепи эмиттера обусловлено в основном движением дырок (они являются основными носителями тока) и сопровождается их «впрыскиванием» — инжекцией — в область базы. Проникшие в базу дырки диффундируют по направлению к коллектору, причем при небольшой толщине базы значительная часть инжектированных дырок достигает коллектора. Здесь дырки захватываются полем, действующим внутри перехода (притягиваются к отрицательно заряженному коллектору), и изменяют ток коллектора. Следовательно, всякое изменение тока в цепи эмиттера вызывает изменение тока в цепи коллектора.

Прикладывая между эмиттером и базой переменное напряжение, получим в цепи коллектора переменный ток, а на выходном сопротивлении — переменное напряжение. Величина усиления зависит от свойств p-n-переходов, нагрузочных сопротивлений и напряжения батареи Бк. Обычно >> , поэтому значительно превышает входное напряжение (усиление может достигать 10 000). Так как мощность переменного тока, выделяемая в , может быть больше, чем расходуемая в цепи эмиттера, то транзистор дает и усиление мощности. Эта усиленная мощность появляется за счет источника тока, включенного в цепь коллектора.

Из рассмотренного следует, что транзистор, подобно электронной лампе, дает усиление и напряжения и мощности. Если в лампе анодный ток управляется напряжением на сетке, то в транзисторе ток коллектора, соответствующий анодному току лампы, управляется напряжением на базе.

Принцип работы транзистора п-р-п-типа аналогичен рассмотренному выше, но роль дырок играют электроны. Существуют и другие типы транзисторов, так же как и другие схемы их включения. Благодаря своим преимуществам перед электронными лампами (малые габаритные размеры, высокие к. п. д. и срок службы, отсутствие накаливаемого катода и поэтому потребление меньшей мощности, отсутствие необходимости в вакууме и т. д.), транзистор совершил революцию в области электронных средств связи и обеспечил создание быстродействующих ЭВМ с большим объемом памяти.

Контрольные вопросы

  • В чем суть адиабатического приближения и приближения самосогласованного поля?
  • Чем отличаются энергетические состояния электронов в изолированном атоме и кристалле? Что такое запрещенные и разрешенные энергетические зоны?
  • Чем различаются по зонной теории полупроводники и диэлектрики? металлы и диэлектрики?
  • Когда по зонной теории твердое тело является проводником электрического тока?
  • Как объяснить увеличение проводимости полупроводников с повышением температуры?
  • Чем обусловлена проводимость собственных полупроводников?
  • Почему уровень Ферми в собственном полупроводнике расположен в середине запрещенной зоны? Доказать это положение.
  • Каков механизм электронной примесной проводимости полупроводников? дырочной примесной проводимости?
  • Почему при достаточно высоких температурах в примесных полупроводниках преобладает собственная проводимость?
  • Каков механизм собственной фотопроводимости? примесной фотопроводимости? Что такое красная граница фотопроводимости?
  • Каковы по зонной теории механизмы возникновения флуоресценции и фосфоресценции?
  • В чем причины возникновения контактной разности потенциалов?
  • В чем суть термоэлектрических явлений? Как объяснить их возникновение?
  • Когда возникает запирающий контактный слой при контакте металла с полупроводником n-типа? с полупроводником р-типа? Объясните механизм его образования.
  • Как объяснить одностороннюю проводимость р-п-перехода?
  • Какова вольт-амперная характеристика p-n-перехода? Объясните возникновение прямого и обратного тока.
  • Какое направление в полупроводниковом диоде является пропускным для тока?
  • Почему через полупроводниковый диод проходит ток (хотя и слабый) даже при запирающем напряжении?

Задачи

31.1. Германиевый образец нагревают от 0 до 17°С. Принимая ширину запрещенной зоны кремния 0,72 эВ, определить, во сколько раз возрастет его удельная проводимость. [В 2,45 раза]

31.2. В чистый кремний введена небольшая примесь бора. Пользуясь Периодической системой Д. И. Менделеева, определить и объяснить тип проводимости примесного кремния.

31.3. Определить длину волны, при которой в примесном полупроводнике еще возбуждается фотопроводимость.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: