5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расстояние между зубчатыми колесами

Содержание

Модуль зубьев зубчатого колеса

Зубчатая передача впервые была освоена человеком в глубокой древности. Имя изобретателя осталось скрыто во тьме веков. Первоначально зубчатые передачи имели по шесть зубьев — отсюда и пошло название «шестерня». За многие тысячелетия технического прогресса передача многократно усовершенствовалась, и сегодня они применяются практически в любом транспортном средстве от велосипеда до космического корабля и подводной лодки. Используются они также в любом станке и механизме, больше всего шестеренок используется в механических часах.

Что такое модуль зубчатого колеса

Современные шестерни далеко ушли от своих деревянных шестизубых предков, изготавливаемых механиками с помощью воображения и мерной веревочки. Конструкция передач намного усложнилась, тысячекратно возросли скорость вращения и усилия, передаваемые через такие передачи. В связи с этим усложнились и методы их конструирования. Каждую шестеренку характеризует несколько основных параметров

  • диаметр;
  • число зубьев;
  • шаг;
  • высота зубца;
  • и некоторые другие.

Одним из самых универсальных характеристик является модуль зубчатого колеса. Существует для подвида — основной и торцевой.

Скачать ГОСТ 9563-60

В большинстве расчетов используется основной. Он рассчитывается применительно к делительной окружности и служит одним из важнейших параметров.

Для расчета этого параметра применяют следующие формулы:

Параметры зубчатых колес

Модуль зубчатого колеса можно рассчитать и следующим образом:

где h — высота зубца.

где De — диаметр окружности выступов,а z — число зубьев.

Что же такое модуль шестерни?

это универсальная характеристика зубчатого колеса, связывающая воедино такие его важнейшие параметры, как шаг, высота зуба, число зубов и диаметр окружности выступов. Эта характеристика участвует во всех расчетах, связанных с конструированием систем передач.

Формула расчета параметров прямозубой передачи

Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр.

Расчет модуля зубчатого колеса

Шаг зацепления t – это расстояние между смежными зубами, измеренное по начальной окружности. Если это расстояние умножить на число зубов z, то мы должны получить ее длину:

проведя преобразование, получим:

Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.

размерность модуля шестерни — миллиметры. Если подставить его в предыдущее выражение, то получится:

выполнив преобразование, находим:

Отсюда вытекает физический смысл модуля зацепления: он представляет собой длину дуги начальной окружности, соответствующей одному зубцу колеса. Диаметр окружности выступов De получается равным

где h’- высота головки.

Высоту головки приравнивают к m:

Проведя математические преобразования с подстановкой, получим:

Диаметр окружности впадин Di соответствует De за вычетом двух высот основания зубца:

где h“- высота ножки зубца.

Для колес цилиндрического типа h“ приравнивают к значению в 1,25m:

Устройство зубчатого колеса

Выполнив подстановку в правой части равенства, имеем:

что соответствует формуле:

и если выполнить подстановку, то получим:

Иначе говоря, головка и ножка зубца относятся друг к другу по высоте как 1:1,25.

Следующий важный размер, толщину зубца s принимают приблизительно равной:

  • для отлитых зубцов: 1,53m:
  • для выполненных путем фрезерования-1,57m, или 0,5×t

Поскольку шаг t приравнивается к суммарной толщине зубца s и впадины sв, получаем формулы для ширины впадины

  • для отлитых зубцов: sв=πm-1,53m=1,61m:
  • для выполненных путем фрезерования- sв= πm-1,57m = 1,57m

Характеристики конструкции оставшейся части зубчатой детали определяются следующими факторами:

  • усилия, прикладываемые к детали при эксплуатации;
  • конфигурация деталей, взаимодействующих с ней.

Детальные методики исчисления этих параметров приводятся в таких ВУЗовских курсах, как «Детали машин» и других. Модуль шестерни широко используется и в них как один из основных параметров.

Для отображения шестеренок методами инженерной графики используются упрощенные формулы. В инженерных справочниках и государственных стандартов можно найти значения характеристик, рассчитанные для типовых размеров зубчатых колес.

Исходные данные и замеры

На практике перед инженерами часто встает задача определения модуля реально существующей шестерни для ее ремонта или замены. При этом случается и так, что конструкторской документации на эту деталь, как и на весь механизм, в который она входит, обнаружить не удается.

Самый простой метод — метод обкатки. Берут шестерню, для которой характеристики известны. Вставляют ее в зубья тестируемой детали и пробуют обкатать вокруг. Если пара вошла в зацепление — значит их шаг совпадает. Если нет — продолжают подбор. Для косозубой выбирают подходящую по шагу фрезу.

Такой эмпирический метод неплохо срабатывает для зубчатых колес малых размеров.

Для крупных, весящих десятки, а то и сотни килограмм, такой способ физически нереализуем.

Результаты расчетов

Для более крупных потребуются измерения и вычисления.

Как известно, модуль равен диаметру окружности выступов, отнесенному к числу зубов плюс два:

Последовательность действий следующая:

  • измерить диаметр штангенциркулем;
  • сосчитать зубцы;
  • разделить диаметр на z+2;
  • округлить результат до ближайшего целого числа.

Зубец колеса и его параметры

Данный метод подходит как для прямозубых колес, так и для косозубых.

Расчет параметров колеса и шестерни косозубой передачи

Расчетные формулы для важнейших характеристик шестерни косозубой передачи совпадают с формулами для прямозубой. Существенные различия возникают лишь при прочностных расчетах.

Определение межосевого расстояния зубчатой

Передачи и модуля зацепления

Межосевое расстояние цилиндрической зубчатой передачи определяют по зависимости:

, мм

где [σ]H – допускаемое контактное напряжение в МПа;

М1 – номинальный крутящий момент на шестерне в Нмм;

U — передаточное число;

КП – коэффициент, учитывающий влияние суммарной длины контактных линий на повышение нагрузочной способности передачи.

Для косозубых колес: при твердости НВ ≤ 350 и β 0 КП = 1,35…1,5 (меньшие значения при Z ≤ 20, а большие – при Z1 > 40); при твердости HB > 350, а также при β > 25 0 независимо от твердости КП = 1,15.

Полученное значение аw округляем до ближайшего стандартного значения по ГОСТ 2185-88.

Стандартные значения межосевого расстояния, мм

Модуль зацепления ориентировочно принимают по зависимости:

В нашем случае примем m = 0,02·160 = 3,2 мм.

Полученное значение модуля округляем до ближайшего стандартного значения по ГОСТ 9563 – 88

Стандартные значения модуля, мм

Выбираем m = 3 мм из первого предпочтительного ряда.

Расчет чисел зубьев, фактического передаточного

Числа и угла наклона зуба. Определение числа зубьев

Суммарное число зубьев Zc для косозубых и шевронных колес:

Угол наклона зуба β принимаем (для косозубых колес) β = 13 0 .

Числа зубьев шестерни и колеса:

Уточняем фактическое передаточное число.

Так как отклонение фактического передаточного числа от проектного (заданного) не должно превышать ± 3,5%, то в нашем случае отклонение в -1,45% является допустимым.

Проверка условия сборки

Для косозубых колес уточняют фактический угол наклона зуба β:

,

Угол наклона зуба не подлежит изменению и стандартизации.

Затем назначаем степень точности передачи, ориентируясь на окружную скорость:

, м/с

Для такой низкой окружной скорости можно назначить пониженную 8-ю степенью точности изготовления.

Рекомендуемая степень точности изготовления

Проверка действительных контактных напряжений

Проверка действительных контактных напряжений выполняется после уточнения величины коэффициента нагрузки и определения геометрических размеров зубчатых колес по зависимости:

Читать еще:  Флюсовая проволока для полуавтомата

, МПа

где К – уточненное значение коэффициента нагрузки;

Uф – фактическое передаточное число.

Затем необходимо рассчитать отклонение действительного контактного напряжения σН и [σ]Н, отклонение не должно превышать +5…- 20%. При перегрузке необходимо увеличить межосевое расстояние до ближайшего большего из стандартного ряда.

,

Запас прочности на 3,62% превышающий действительные напряжения передачи.

ВЫВОД. Расчет передачи на контактную прочность выполнен правильно.

Проверка прочности зубьев шестерни и колеса на изгиб

Проверка изгибных напряжений производится по формуле:

, МПа

где Р – окружное усилие, Н;

Y – коэффициент формы зуба, определяется в зависимости от числа зубьев: действительного для прямозубых колес и эквивалентного (Zv) для косозубых и шевронных колес,

КП – коэффициент повышения нагрузочной способности на изгиб косозубых и шевронных колес (его значения такие же, как и для расчета на контактную прочность):

mn — нормальный модуль (стандартный модуль), мм.

где = 170,3 МПа.

Полученные значения действительных изгибных напряжений существенно ниже допускаемых, что также свидетельствует о правильности расчета на контактную прочность.

Зубчатое колесо. Основные параметры. Чертеж

Ни один хороший механизм не может быть построен без такой детали, как зубчатое колесо (или, иначе, шестерня). Правильное понимание того, как шестерни влияют на такие параметры, как крутящий момент и скорость вращения, очень важно. Ниже будет рассказано об азах зубчатых передач и о том, как правильно их использовать.

Механическое преимущество: крутящий момент против скорости вращения

Зубчатые передачи работают по принципу механического преимущества. Это значит, что с помощью использования шестерен различных диаметров вы можете изменять скорость вращения выходного вала и вращающий момент, развиваемый приводным двигателем.

Любой электродвигатель имеет определенную скорость вращения и соответствующий его мощности крутящий момент. Но, к сожалению, для многих механизмов предлагаемые на рынке и подходящие по стоимости асинхронные двигатели обычно не обладают желаемым соотношением между скоростью и моментом (исключением являются сервоприводы и мотор-редукторы с высоким моментом). Например, вы действительно хотите, чтобы колеса вашего робота-уборщика вращались со скоростью 3000 об/мин при низком крутящем моменте? Нет конечно, поэтому последний зачастую предпочтительнее скорости.

Уравнение зубчатой передачи

Она обменивает высокую входную скорость на больший выходной крутящий момент. Этот обмен происходит по очень простому уравнению, которое можно записать так:

Момент входной * Скорость входная = Момент выходной * Скорость выходная

Скорость входную можно найти, просто просматривая табличку приводного электродвигателя. Момент входной легко определить по этой скорости и механической мощности из той же таблички. Затем просто подставим выходную скорость или требуемый крутящий момент в правую часть уравнения.

Например, предположим, что ваш асинхронный двигатель при моменте на выходном валу 0,5 Н∙м имеет скорость 50 об/с, но вы хотите только 5 об/с. Тогда ваше уравнение будет выглядеть так:

0,5 Н∙м * 50 об/с = Момент выходной* 5 об/с.

Ваш выходной крутящий момент будет 5 Н∙м.

Теперь предположим, что с тем же мотором вам нужно 5 Н∙м, но при этом требуется минимальная скорость 10 об/с. Как бы узнать, способен ли на это ваш мотор вместе с зубчатой передачей (т. е., по сути, мотор-редуктор)? Обратимся снова к нашему уравнению

0,5 Н∙м * 50 об/с = 5 Н∙м * Скорость выходная,

Скорость выходная = 5 об/с.

Итак, вы определили, используя простое уравнение, что при показателе Момент выходной =5 Н∙м обеспечить скорость выходную в 10 об/с ваша зубчатая передача не способна. Вы только что сохранили себе кучу денег, так как не потратили их на механизм, который никогда не заработал бы.

Передаточное число зубчатой передачи

Мы записали уравнения, но как механически поменять местами крутящий момент и скорость? Для этого нужны две шестерни (иногда больше) различных диаметров, чтобы иметь конкретное передаточное число. В любой паре шестерен большее зубчатое колесо будет двигаться более медленно, чем меньшее, но оно будет передавать на выходной вал больший крутящий момент. Таким образом, чем больше величина разницы (или передаточное число) между двумя колесами, тем больше разница их скоростей и передаваемых крутящих моментов.

Передаточное число показывает, во сколько раз зубчатая передача изменяет скорость и вращающий момент. Для него, опять же, имеется очень простое уравнение.

Предположим, что передаточное число равно 3/1. Это будет означать, что вы увеличиваете ваш крутящий момент втрое, а скорость втрое снижаете.

Момент входной = 1,5 Н∙м, Скорость входная = 100 об/с,

Передаточное число = 2/3

Момент выходной = Момент входной * 2/3 = 1 Н∙м,

Скорость выходная = Скорость входная * 3/2 = 150 об/с.

Итак, на выходе передачи момент в полтора раза вырос, а скорость точно так же снизилась.

Достижение определенного передаточного числа

Если вы хотите достичь простой его величины, скажем 2 к 1, вы должны использовать две шестерни, одна из которых вдвое больше другой. Это не что иное, как отношение их диаметров. Если диаметр зубчатого колеса в 3 раза больше, чем у сцепленного с ним другого, то вы получите передаточное число 3/1 (или 1/3).

Для гораздо более точного способа вычислить передаточное число подсчитайте отношение зубьев на шестернях. Если одна из них имеет 28 зубьев и другая — 13, вы получите передаточное число 28 / 13 = 2,15 или 13 / 28 = 0,46. Подсчет зубьев всегда будет давать вам наиболее точную величину.

Эффективность передач

К сожалению, в зубчатой передаче вы имеете определенные энергетические потери. Это обусловлено очевидными причинами, такими как трение, рассогласование углов давления, смазкой, зазорами (расстоянием между сцепленными зубьями двух шестерен), а также угловыми моментами и т. д. Различные типы передач, разные виды зубчатых колес, различные материалы и износ шестерен, – все это будет влиять на КПД передачи. Возможные их комбинации дадут слишком большой список, поэтому точную величину КПД передачи, которые вы используете, вы сможете найти в документации на нее.

Предположим, что вы используете два цилиндрических зубчатых колеса. Обычное КПД такой передачи примерно

90%. Умножьте это число на вашу скорость выходную и момент выходной, чтобы получить истинные выходные величины передачи.

Если (из предыдущего примера):

Передаточное число = 2/3

Момент выходной = Момент входной * 2/3 = 1 Н∙м,

Скорость выходная = Скорость входная * 3/2 = 150 об/с,

Истинный Момент выходной = 1 Н∙м * 0,9= 0,9 Н∙м,

Истинная Скорость выходная = 150 об/с * 0,9 = 135 об/с.

Направление вращения шестерен

Разрабатывая любую зубчатую передачу, нужно понимать, как она изменяет направление вращения выходного вала. Две сцепленные шестерни всегда будут вращаться в противоположных направлениях. Это означает, что если одна вращается по часовой стрелке, то другая всегда будет вращаться против нее. Это вполне очевидно. Но что делать, если у вас есть передача, скажем, из шести сцепленных шестерен? Правило здесь следующее: входной и выходной валы у передач с нечетным числом шестерен всегда вращаются в одном направлении, а при четном числе шестерен – в противоположном.

Конструкция и параметры зубчатого колеса

Оно содержит венец с зубьями, диск и ступицу. Имеется три наиболее важных его параметра: модуль, диаметр делительной окружности и количество зубьев. Какую же делительную окружность имеет зубчатое колесо? Чертеж цилиндрического колеса с типовыми эвольвентными зубьями показан ниже.

Например, зубчатое колесо с 22 зубьями и диаметром 44 мм имеет модуль m = 2 мм. Сцепленные шестерни должны обе иметь один модуль. Значения их стандартизованы, и как раз на делительной окружности модуль данного колеса принимает свое стандартное значение.

Высота головки зуба одного колеса меньше высоты ножки зуба второго, зацепляющегося с ним, благодаря чему образуется радиальный зазор c.

Для обеспечения бокового зазора δ между двумя сцепленными зубьями сумма их толщин принимается меньше их окружного шага p. Радиальный и боковой зазоры предусматриваются для создания необходимых условий смазки, нормальной работы передачи при неизбежных неточностях изготовления и сборки, тепловом увеличении размеров передачи и т. п.

Расчет зубчатого колеса

Он всегда ведется в составе расчета конкретной зубчатой передачи. Исходными данными для него обычно являются мощность (или крутящий момент), угловые скорости (или скорость одного вала и передаточное число), условия работы (характер нагрузки) и срок службы передачи.

Читать еще:  Как сделать шаблон для кладки кирпича

Дальнейший порядок относится к закрытой цилиндрической прямозубой передаче.

1. Определение передаточного числа u.

2. Выбор материалов колес в зависимости от условий работы, назначение термообработки и значения твердости рабочих поверхностей зубьев.

3. Расчет зубьев передачи на изгиб.

4. Расчет зубьев передачи на контактную прочность (прочности контактирующих поверхностей зубьев).

5. Определение межосевого расстояния aW из условия контактной прочности и округление его значения до стандартного.

6. Задание модуля из соотношения m = (0,01 — 0,02) х aW и округление его значения до ближайшего стандартного. При этом в силовых передачах желательно иметь m ≥1,5 – 2 мм.

7. Определение суммарного числа зубьев передачи, числа зубьев шестерни и колеса.

8. Выбор коэффициентов формы зубьев для шестерни и колеса.

9. Проверка прочности зубьев по напряжениям изгиба.

10. Проведение геометрического расчета передачи.

11. Определение окружной скорости колеса и назначение соответствующей точности зацепления.

Расчет зубчатого колеса в составе открытой зубчатой передачи несколько отличается от приведенного, но в основном последовательность его такая же.

Как обозначается точность изготовления зубчатых колес

При изготовлении любые их виды имеют ряд погрешностей, среди которых выделяют четыре основные:

  • кинематическую погрешность, связанную в основном с радиальным биением зубчатых венцов;
  • погрешность плавности работы, вызываемую отклонениями шага и профиля зубьев;
  • погрешность контакта зубьев в передаче, которая характеризует полноту прилегания их поверхностей в зацеплении;
  • боковой зазор между неработающими поверхностями зубьев.

Для контроля первых трех погрешностей стандартами установлены специальные показатели – степени точности от 1 до 12, причем точность изготовления увеличивается с уменьшением показателя. Для контроля четвертой погрешности изготовления имеются два показателя:

  • вид сопряжения зубчатых колес – обозначается литерами A, B, C, D, E, H;
  • допуск на боковой зазор – обозначается литерами x, y, z, a, b, c, d, e, h.

Для обоих показателей бокового зазора обозначения даны в порядке убывания его величины и допуска на него.

Условно точность зубчатых колес обозначается двумя способами. Если степень точности по первым трем погрешностям одинакова, то ставится один общий для них численный показатель степени точности, за которыми стоят литеры обозначения вида сопряжения и допуска на боковой зазор. Например:

8-Ас ГОСТ 1643 – 81.

Если точности по первым трем погрешностям разные, то в обозначении ставятся три численных показателя последовательно. Например:

5-4-3-Са ГОСТ 1643 – 81.

Типы зубчатых передач

Любое зубчатое колесо, независимо от его типа, делается и работает по одним и тем же вышеприведенным принципам. Однако различные их типы позволяют выполнить разные задачи. Некоторые виды передач обладают или высоким КПД, или высоким передаточным отношением, или же работают с непараллельными осями вращения шестерен, к примеру. Ниже приведены основные общие типы. Это не полный список. Также возможно и сочетание нижеприведенных типов.

Примечание: Приведены только типичные КПД передач. Из-за многих других возможных факторов приводимые КПД должны использоваться только в качестве справочных величин. Часто производители приводят ожидаемые КПД в паспортах для своих передач. Помните, что износ и смазка будут также существенно влиять на эффективность передач.

Цилиндрические прямозубые колеса (КПД

Цилиндрическое зубчатое колесо имеет зубья, расположенные на цилиндрической поверхности. Передачи с ними являются наиболее часто используемыми типами благодаря своей простоте и максимальной эффективности среди всех других. Передаточное число для одной пары u ≤ 12,5. Не рекомендуется для очень высоких нагрузок, так как прямые зубья зубчатого колеса довольно легко ломаются.

Цилиндрические косозубые колеса (КПД

Они работают так же, как цилиндрические прямозубые, для передачи момента между параллельными валами, но у такой передачи более плавно происходит зацепление. Вследствие этого они создают меньше шума при работе и имеют меньшие габариты. У них большая нагрузочная способность. К сожалению, из-за сложной формы зубьев они, как правило, более дорогие.

Цилиндрические шевронные колеса

Являются разновидностью предыдущего вида. Чем отличается такое зубчатое колесо. Чертеж его показан ниже. Видно, что по ширине его венца расположены зубья с правым и левым наклоном, так что такие составные зубья зубчатого колеса по форме напоминает «шевроны». Эти колеса обладают всеми преимуществами косозубого их вида, плюс отсутствием осевых нагрузок. Они способны самоцентрироваться и не нуждаются в дорогостоящих радиально-упорных подшипниках для восприятия осевых нагрузок.

Конические зубчатые колеса (КПД

Зубья этих колес, располагающиеся на конических поверхностях, выполняют прямыми, косыми, круговыми (дугообразными). Эти передачи применяют для передачи момента между перекрещивающимися под разными углами валами. К сожалению, их КПД довольно низок, поэтому следует избегать их применения, если возможно.

Червячные передачи (КПД

Это передача с винтом-червяком на одном валу и червячным колесом на втором, перпендикулярном первому, валу. Они имеют очень высокое передаточное число. В расчетах принимают во внимание то, что у червяка (однозаходного) имеется только один зуб (виток).

Справочник зубореза — Страница 2

Глава 1 ОБЩИЕ СВЕДЕНИЯ

ОСНОВНЫЕ ПОНЯТИЯ О ЗУБЧАТЫХ ПЕРЕДАЧАХ

Зубчатая передача состоит из пары находящихся в зацеплении зубчатых колес или зубчатого колеса и рейки. В первом случае она служит для передачи вращательного движения от одного вала к другому, во втором — для превращения вращательного движения в поступательное.

В машиностроении применяют следующие виды зубчатых передач: цилиндрические (рис. 1) при параллельном расположении валов; конические (рис. 2, а) при пересекающихся и перекрещивающихся валах; винтовые и червячные (рис. 2, б и в) при перекрещивающихся валах.

Зубчатое колесо, передающее вращение, называют ведущим, приводимое во вращение — ведомым. Колесо зубчатой пары с меньшим числом зубьев называют шестерней, сопряженное с ним парное колесо с большим числом зубьев — колесом.

Отношение числа зубьев колеса к числу зубьев шестерни называют передаточным числом:

Кинематической характеристикой зубчатой передачи является передаточное отношение i, представляющее собой отношение угловых скоростей колес, а при постоянном i — и отношение углов поворота колес

Если при i не стоят индексы, то под передаточным отношением следует понимать отношение угловой скорости ведущего колеса к угловой скорости ведомого.

Зубчатое зацепление называют внешним, если оба зубчатых колеса имеют внешние зубья (см. рис. 1, а, б), и внутренним, если одно из колес имеет внешние, а второе — внутренние зубья (см. рис. 1, в).

В зависимости от профиля зубьев колес различают зацепления трех основных видов: эвольвентные, когда профиль зуба образован двумя симметричными эвольвентами; циклоидальные, когда профиль зубьев образован циклоидальными кривыми; зацепления Новикова, когда профиль зуба образован дугами окружности.

Эвольвентой, или разверткой окружности, называется кривая, которую описывает точка, лежащая на прямой (так называемой производящей прямой) линии, касательной к окружности и перекатываемой по окружности без скольжения. Окружность, разверткой которой является эвольвента, называют основной окружностью. С увеличением радиуса основной окружности кривизна эвольвенты уменьшается. При радиусе основной окружности, равном бесконечности, эвольвента превращается в прямую, что соответствует профилю зуба рейки, очерченному по прямой.

Наиболее широкое применение находят зубчатые передачи с эвольвентным зацеплением, которое имеет следующие преимущества перед другими видами зацепления: 1) допускается небольшое изменение межосевого расстояния при неизменном передаточном отношении и нормальной работе сопряженной пары зубчатых колес; 2) облегчается изготовление, так как одним и тем же инструментом можно нарезать колеса

Рис. 1. Цилиндрические зубчатые колеса

Рис. 2. Зубчатые передачи с непараллельными осями

с различным числом зубьев, но одинакового модуля и угла зацепления; 3) колеса одного и того же модуля сопрягаются между собой независимо от числа зубьев.

Приведенные ниже сведения относятся к эвольвентному зацеплению.

Схема звольвентного зацепления (рис. 3, а). Два колеса с эвольвентными профилями зубьев соприкасаются в точке А, находящейся на линии центров О 1 О2 и называемой полюсом зацепления. Расстояние aw между осями колес передачи по межосевой линии называют межосевым расстоянием. Через полюс зацепления проходят начальные окружности зубчатого колеса, описанные вокруг центров О1 и О2 и при работе зубчатой пары перекатывающиеся одна по другой без скольжения. Понятие о начальной окружности не имеет смысла для одного отдельно взятого колеса, и в этом случае применяют понятие о делительной окружности, на которой шаг и угол зацепления колеса соответственно равны теоретическому шагу и углу зацепления зуборезного инструмента. При нарезании зубьев методом обкатки делительная окружность представляет собой как бы производственную начальную окружность, возникающую в процессе изготовления колеса. В случае передачи без смещения делительные окружности совпадают в начальными.

Читать еще:  Оснастка для электроэрозионного станка

Рис. 3. Эвольвентное зацепление:

а — основные параметры; б — инволюта; 1 — линия зацепления; 2 — основная окружность; 3 — начальная и делительная окружности

При работе цилиндрических зубчатых колес точка касания зубьев перемещается по прямой MN, касательной к основным окружностям, проходящей через полюс зацепления и называемой линией зацепления, являющейся общей нормалью (перпендикуляром) к сопряженным эвольвентам.

Угол atw между линией зацепления MN и перпендикуляром к межосевой линии O1O2 (или между межосевой линией и перпендикуляром к линии зацепления) называется углом зацепления.

Элементы прямозубого цилиндрического колеса (рис. 4): da— диаметр вершин зубьев; d — диаметр делительный; df — диаметр впадин; h — высота зуба — расстояние между окружностями вершин и впадин; ha — высота делительной головки зуба — расстояние между окружностями делительной и вершин зубьев; hf — высота делительной ножки зуба — расстояние между окружностями делительной и впадин; pt — окружной шаг зубьев — расстояние между одноименными профилями соседних зубьев по дуге концентрической окружности зубчатого колеса;

st — окружная толщина зуба — расстояние между разноименными профилями вуба по дуге окружности (например, по делительной, начальной); ра — шаг эвольвентного зацепления — расстояние между двумя точками одноименных поверхностей соседних зубьев, расположенных на нормали MN к ним (см. рис. 3).

Окружной модуль mt—линейная величина, в п (3,1416) раз меньше окружного шага. Введение модуля упрощает расчет и изготовление зубчатых передач, так как позволяет выражать различные параметры колеса (например, диаметры колеса) целыми числами, а не бесконечными дробями, связанными с числом п. ГОСТ 9563—60* установил следующие значения модуля, мм: 0,5; (0,55); 0,6; (0,7); 0,8; (0,9); 1; (1,125); 1,25; (1,375); 1,5; (1,75); 2; (2,25); 2,5; (2,75); 3; (3,5); 4; (4,5); 5; (5,5); 6; (7); 8; (9); 10; (11); 12; (14); 16; (18); 20; (22); 25; (28); 32; (36); 40; (45); 50; (55); 60; (70); 80; (90); 100.

Рис. 4. Элементы зубчатого колеса

При выборе конструктором модуля рекомендуется назначать модули не заключенные в скобки. Для некоторых отраслей промышленности и в особых условиях (например, при ремонте) допускается применение и других модулей.

Значения делительного окружного шага pt и шага зацепления ра для различных модулей представлены в табл. 1.

1. Значения делительного окружного шага и шага зацепления для различных модулей (мм)

В ряде стран, где еще применяют дюймовую систему (1″ = 25,4 мм), принята питчевая система, по которой параметры зубчатых колес выражены через питч (pitch — шаг). Наиболее распространена система диаметрального питча, применяемая для колес с питчем от единицы и выше:

где г — число зубьев; d — диаметр делительной окружности, дюймы; р — диаметральный питч.

При расчете эвольвентного зацепления пользуются понятием эвольвентного угла профиля зуба (инволюты), обозначаемого inv aх. Он представляет собою центральный угол 0х (см. рис. 3, б), охватывающий часть эвольвенты от ее начала до какой-то точки хi и определяется по формуле:

где ах — угол профиля, рад. По этой формуле рассчитаны таблицы инволюты, которые приведены в справочниках [7].

Радиан равен 180°/п = 57° 17′ 45″ или 1° = 0,017453 рад. На эту величину нужно умножить угол, выраженный в градусах, чтобы перевести его в радианы. Например, ах = 22° = 22 X 0,017453 = 0,38397 рад.

Исходный контур. При стандартизации зубчатых колес и зуборезного инструмента для упрощения определения формы и размеров нарезаемых зубьев и инструмента введено понятие исходного контура. Это контур зубьев номинальной исходной зубчатой рейки в сечении плоскостью, перпендикулярной к ее делительной плоскости. На рис. 5 показан исходный контур по ГОСТ 13755—81 (СТ СЭВ 308—76) — прямобочный реечный контур со следующими значениями параметров и коэффициентов: угол главного профиля а = 20°; коэффициент высоты головки h*a = 1; коэффициент высоты ножки h*f = 1,25; коэффициент радиуса кривизны переходной кривой р*f = 0,38; коэффициент глубины захода зубьев в паре исходных контуров h*w = 2; коэффициент радиального зазора в паре исходных контуров С* = 0,25.

Допускается увеличение радиуса переходной кривой рf = р*m, если это не нарушает правильности зацепления в передаче, а также увеличение радиального зазора С = С*m до 0,35m при обработке долбяками или шеверами и до 0,4m при обработке под зубошлифование. Могут быть передачи с укороченным зубом, где h*a = 0,8. Часть зуба между делительной поверхностью и поверхностью вершин зубьев называют делительной головкой зуба, высота которой ha = hф*m; часть зуба между делительной поверхностью и поверхностью впадин — делительной ножкой зуба. При введении зубьев одной рейки во впадины другой до совпадения их профилей (пара исходных контуров) между вершинами и впадинами образуется радиальный зазор с. Высота захода или высота прямолинейного участка составляет 2m, а высота зуба m + m + 0,25m = 2,25m. Расстояние между одноименными профилями соседних зубьев называют шагом р исходного контура, его значение р = пm, а толщина зуба рейки в делительной плоскости составляет половину шага.

Для улучшения плавности работы цилиндрических колес (преимущественно при увеличении окружной скорости их вращения) применяют профильную модификацию зуба, в результате которой поверхность зуба выполняется с преднамеренным отклонением от теоретической эвольвентной формулы у вершины или у основания зуба. Например, срезают профиль зуба у его вершины на высоте hc = 0,45m от окружности вершин на глубину модификации А = (0,005%0,02) m (рис. 5, б)

Рис. 5. Исходный контур:

а — основные элементы профиля;

б — фланкированный профиль;

1 — делительная прямая

Рис. 6. Смещения исходного контура;

б — без смещения;

l — исходный контур

Для улучшения работы зубчатых колес (повышения прочности зубьев, плавности зацепления и тп.), получения заданного межосевого расстояния, во избежание подрезания *1 зубьев и для других целей производят смещение исходного контура.

Смещение исходного контура (рис. 6) — расстояние по нормали между делительной поверхностью зубчатого колеса и делительной плоскостью исходной зубчатой рейки при ее номинальном положении.

При нарезании зубчатых колес без смещения инструментом реечного типа (червячные фрезы, гребенки) делительная окружность колеса обкатывается без скольжения по средней линии рейки. В этом случае толщина зуба колеса равна половине шага (если не учитывать нормального бокового зазора *2, значение которого мало.

Рис. 7. Боковой с и радиальный in зазоры зубчатого зацепления

При нарезании зубчатых колес со смещением, исходную рейку смещают в радиальном направлении. Делительная окружность колеса обкатывается не по средней линии рейки, а по какой-то другой прямой, параллельной средней линии. Отношение смешения исходного контура к расчетному модулю — коэффициент смещения исходного контура х. У колес со смещением толщина зуба по делительной окружности не равна теоретической, т. е. половине шага. При положительном смещении исходного контура (от оси колеса) толщина зуба на делительной окруж¬ности больше, при отрицательном (в направлении оси колеса) — меньше

Для обеспечения бокового зазора в зацеплении (рис. 7) толщину зуба колес делают несколько меньше теоретической. Однако ввиду ма¬лой величины этого смещения такие колеса практически считают коле¬сами без смещения.

При обработке зубьев методом обкатки зубчатые колеса со смеще¬нием исходного контура нарезают тем же инструментом и при той же настройке станка, что и колеса без смещения. Воспринимаемое смеще¬ние — разность межосевого расстояния передачи со смещением и ее делительного межосевого расстояния.

Определения и формулы для геометрического расчета основных параметров зубчатых колес приведены в табл. 2.

2. Определения и формулы расчета некоторых параметров эвольвентных цилиндрических зубчатых колес

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector