Регулятор мощности на симисторе bta41
Китайский регулятор мощности на симисторе
Большую популярность у потребителей получил китайский регулятор мощности на симисторе или диммер. Благодаря низкой цене и многообразию использования он пользуется не малым спросом. Кто уже разобрался в применении, тот использует его в быту. Кто еще нет, найдет ответы в этой статье. Далее рассмотрим:
Основные характеристики от производителя
Особенности:
1. Специальный дизайн с 1,6 мм, FR-4 высокой термостойкостью печатной платы.
2. Безопасная и надежная работа с большим током.
3. Конструкция двойной емкости: безопасный конденсатор и металлический пленочный конденсатор для более эффективной защиты.
4. Применяются материалы из алюминия и нержавеющей стали, более подходят для контроля температуры или контроля скорости и для использования в промышленности.
5. Красивая и легкая, безопасная, удобная, Высококачественная продукция. Не ржавеет после длительного использования.
6. В основном подходит для резистивных нагрузок, например, фонари.
Технические характеристики:
Диапазон напряжения: 10-220 В
Максимальная мощность: 2000 Вт
Вес нетто: 41,8 г
Рабочее напряжение: AC 220 V
Пластина радиатора размер: 48x35x30 мм
Принципиальная схема китайского регулятора мощности на симисторе
Описание работы схемы
В основе схемы лежит фазоимпульсное управление мощностью. При подаче на схему питания через двухзвенный RC-фильтр в начале полупериода сетевого напряжения конденсатор С1 заряжается через резистор R2, и потенциометры R3, R4. С помощью переменных резисторов мы, по сути, меняем время заряда конденсатора С1. Чем больше сопротивление резисторов, тем дольше заряжается конденсатор. Следовательно, динистор будет срабатывать реже и наоборот, т.е. меняется рабочая частота генератора. Этот резистор с конденсатором образуют времязадающую или частотозадающую цепочку.
Когда на выводах конденсатора С1 напряжение достигнет значения примерно 32 вольта (напряжение переключения симметричного динистора DB3), динистор отпирается и конденсатор разряжается по цепи управляющего электрода симистора VS1. Разряд конденсатора происходит мгновенно, вызывая быстрое запирание симметричного динистора. Напряжение на выводах конденсатора С1 скоро вновь становится достаточным для возврата динистора в проводящее состояние и для того, чтобы вызвать появление нового импульса, отпирающего симистор.
При малом сопротивлении цепи R2-R3-R4 порог в 32 вольта достигается быстрее и симистор отпирается раньше, а более высокое сопротивление вызывает большую задержку момента отпирания симистора и, следовательно, уменьшение мощности в нагрузке. Подстроечный резистор R3 позволяет установить границы регулировки мощности.
Для защиты симистора необходима цепочка R1-C2. Она необходима для защиты от внешних перенапряжений, ограничения влияния dV/dt и тока перегрузки. Кроме того, разряд конденсатора С2 через симистор способствует его отпиранию, которое могло бы быть нарушено запаздыванием тока в индуктивной нагрузке.
Как сделать регулятор мощности на симисторе своими руками: варианты схем
Для управления некоторыми видами бытовых приборов (например, электроинструментом или пылесосом) применяют регулятор мощности на основе симистора. Подробно о принципе работы этого полупроводникового элемента можно узнать из материалов, размещенных на нашем сайте. В данной публикации мы рассмотрим ряд вопросов, связанных с симисторными схемами управления мощностью нагрузки. Как всегда, начнем с теории.
Принцип работы регулятора на симисторе
Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.
Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.
Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.
Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.
Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%
При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.
Варианты схем регулятора
Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.
Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В
Обозначения:
- Резисторы: R1- 470 кОм , R2 – 10 кОм,
- Конденсатор С1 – 0,1 мкФ х 400 В.
- Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
- Динистор DN1 – DB3.
- Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.
При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.
Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.
К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.
Схема регулятора с обратной связью
Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:
- Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
- Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.
Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.
Регулятор мощности с обратной связью
Обозначения:
- Резисторы: R1 – 18 кОм (2 Вт); R2 — 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 — 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
- Конденсаторы: С1 — 22 мкФ х 50 В; С2 — 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 — 100 нФ; С6 – 1 мкФ х 50 В..
- Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
- Симистор Т1 – BTA24-800.
- Микросхема – U2010B.
Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):
- А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
- В — При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
- С – Режим индикации перегрузки.
Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.
Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.
Таблица для подбора номиналов сопротивлений в зависимости от мощности двигателя
Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.
Регулятор для индуктивной нагрузки
Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.
Существует два варианта решения проблемы:
- Подача на управляющий электрод серии однотипных импульсов.
- Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.
Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.
Схема регулятора мощности для индуктивной нагрузки
Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.
Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности
Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.
Простой регулятор мощности на симисторе своими руками
В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.
Самодельный регулятор мощности
Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.
Мощный симисторный регулятор мощности
Здравствуй мой дорогой читатель. Сегодня я хочу рассказать про нюансы мощных симисторных регуляторов мощности, которые заполонили наш рынок. Теперь так называемые диммеры продают даже в отделах продажи дистилляторов, для регулировки температуры нагрева материала в перегонных аппаратах.
Схема мощного симисторного регулятора мощности
Внесу немного ясности о схеме. Схема симисторного регулятора мощности является типичной и в нее может быть включен любой, подходящий вам по параметрам симистор серии BTA, например BTA06-600, BTA16-600 и так далее. Номиналы элементов при этом пересчитывать не нужно. Работу схемы я описывал в статье «Диммер своими руками», и сейчас немного поговорим о другом.
В качестве полупроводника я применил BTA41-600 и мог бы заявить вам, что регулятор мощности рассчитан на 8.5кВт, как это делают большинство продавцов. Да, симистор BTA41-600 рассчитан на максимальный средний ток 40А. Но, во-первых, должен быть запас по току, а во-вторых не только от параметров симистора зависит мощность собранного устройства. От чего же еще может зависеть мощность диммера?
В первую очередь от запаса тока симистора. Для меня это примерно 30% запас. Разница по цене будет несущественной.
Вот пример симисторного регулятора из Китая. Продавец утверждает, что его мощность достигает 4кВт.
Сфотографировано так близко, чтобы выполнить обман зрения и внушить большие размеры теплоотвода. Если вы представляете, что такое 4000Вт, то подумайте, какое сечение провода нам необходимо для пропускания через себя тока 18А. Нет, конечно, если такой диммер включить на 30 секунд, то он может и выдержит, но обычно нагрузкой служат мощные лампы или ТЭН, которые работают часами. Теперь посмотрите ширину дорожек печатной платы этого самого китайского диммера.
Да не выдержат они 4кВт долговременно, будут до ужаса греться даже на 3кВт, а потом перегорят. Поэтому вторым критерием является сечение проводов и дорожек печатной платы. Чем шире и толще, тем лучше. И чем короче они, тем также лучше. В обязательном порядке необходимо их лудить оловом или паять вдоль дорог медную жилу.
Для сведения, медный провод сечением 2.5мм 2 рассчитан на максимальный долговременный ток 27А. Из своего опыта скажу, что при использовании такого провода на нагрузке 3000Вт (ток 14А) в течение 1 часа, он хорошо нагревается. Но это нормально. А уже при 27А изоляция такого провода будет плавиться.
Еще, при такой мощности (3000Вт и более) я отказываюсь от всяких разъемов, зажимных клемм и стараюсь все провода паять сразу к печатной плате. Так как все эти клеммы и разъемы являются уязвимым местом, чуть контакт ослаб и происходит нагрев, а дальше обгорание проводов.
Третий критерий мощного регулятора это теплоотвод. Однажды я выполнял измерение температуры теплоотвода площадью 200см 2 при эксплуатации диммера на нагрузку 1кВт в течение 5 часов. Температура достигла 90 0 С. Для отвода тепла при эксплуатации на мощности 3кВт понадобится радиатор с внушительной площадью поверхности, если мы говорим про долговременную работу. Иначе получим настоящую печь.
Рекомендую в качестве теплоотвода использовать радиатор с вентилятором от ПК, даже небольшой такой теплоотвод с принудительным охлаждением дает отличный результат на мощности 4кВт.
Китайский радиатор, на мощности 4000Вт позволит лишь регулятору не выйти из строя за ближайшие минуты.
Также и наши продавцы, закупая диммеры в Китае, заявляют мощность, которую они долговременно регулировать не могут.
Множество видео роликов про регуляторы мощности имеется на одном из известных видео порталов. Практически все блоггеры демонстрируют их тест на лампах накаливания. Лампа накаливания 60-80Вт может работать через наше устройство без радиатора, это и я проверял. А вот на мощности 1000Вт и выше рисуется совсем другая картина.
Существуют вентиляторы на разное питающее напряжение, в продаже есть вентиляторы и с напряжением питания 220В переменного тока. У меня же напряжение питания 12В постоянного тока. И в качестве источника я применил небольшой импульсный блок питания 12В 1А.
О стеклянном предохранителе. Не советую. На заднюю панель регулятора мощности вывел держатель предохранителя с колпачком. Предохранитель установил на 15А, нагрузка составляла 3000Вт.
Это было что-то. Грелся весь узел, не притронуться рукой. Поэтому, вместо стеклянных предохранителей устанавливайте автоматический выключатель. Например, если нагрузка 3кВт, то выключатель на 16А.
В своем регуляторе мощности я использовал тумблер на 25 Ампер, у которого были две группы контактов. Чтобы повысить надежность я соединил их параллельно медным проводом, сечением 2.5мм 2 .
Корпус диммера я использовал из пластмассы. Для удобства я установил на корпус розетку с керамической вставкой на 16 Ампер.
Также я добавил еще один переменный резистор на 50кОм для более точной (плавной) подстройки.
Вентилятор, розетку и импульсный блок питания я прикрепил к корпусу винтами М3 и гайками, не забыв и про шайбы. В теплоотводе я выполнил отверстия и нарезал резьбу для крепления к нему симистора BTA41-600, а также отверстия с резьбой для крепления самого теплоотвода к корпусу. Как нарезать резьбу в радиаторе я описывал в статье «Нарезаем резьбу в радиаторе усилителя НЧ».
Вилка регулятора рассчитана на ток 16 Ампер. Ее провода припаяны напрямую к печатной плате, миную разъемы и клеммы.
Выводы симистора, при его монтаже, рекомендуется делать как можно короче.
Вывод.
Чтобы собрать мощный симисторный регулятор мощности, помимо выбора параметров симистора необходимо учесть такие конструктивные особенности, как ширина и толщина дорожек печатной платы, сечение соединительных проводов, замена разъемов и клемм пайкой, площадь поверхности теплоотвода, номинальная мощность вилок и розеток. Ведь для регулятора мощности 6кВт (27А) нужны совсем другие розетки, вилки, провода и так далее…
Печатная плата регулятора мощности СКАЧАТЬ
Решено TRIAC BTA41-600,что за ерунда ?
Перейти к странице
ARTEM27
Не знаю как начать даже.
В общем с помощью этого TRIACа(BTA41-600) регулируем мощность нагрева галогенных ламп. Сама лампа расчитана на 220 в. Мощьность лампы 1200вт. На холодную сопротивление этой лампы примерно 1.5- 2 ома.
Триаком управляет китайский регулятор.
Вот такой вот :
ссылка скрыта от гостей
Регулятор имеет плавное включение.
Но пачками горят новые ТРИАКИ.Ставим регулятор на НОЛЬ. Включаем . Бум. и лампа на полную горит,триак готов.Но опытным путем дошли до того ,что если между G и A1 сопротивление не более 40 ом,то работают без нареканий. Но если более то могут вот так вот выгорать. Или долго не живут. Снабберы в соответствии с даташитом ставили. Резистор в 30 ом между G и A1 ставили эффекта ноль. Что это ? Брак или что то не догоняем ?
Что это ? Прошивки Схемы Справочники Маркировка Корпуса Программаторы Аббревиатуры Частые вопросы Обмен ссылками Ссылки дня
- Это информационный блок по ремонту
Содержит основные технические рекомендации и советы поиска по разделам сайта необходимые для ремонта – принципиальные схемы, файлы прошивок, программ, маркировку компонентов, ссылки на базы данных. Обратите внимание и на другие темы где расположены советы и секреты мастеров, измерения, принцип работы и методы диагностики.
Предназначен для тех, кто случайно попал на эту страницу, периодически обновляется и отображается только гостям. - Прошивки в разделах:
Прошивки телевизоров (запросы)
Прошивки телевизоров (хранилище)
Прошивки мониторов (хранилище)
Различные прошивки (запросы) - Схемы в разделах:
Схемы телевизоров (запросы)
Схемы телевизоров (хранилище)
Схемы мониторов (запросы)
Различные схемы (запросы) - Справочники в разделах:
Справочник по транзисторам
ТДКС – распиновка, ремонт, прочее
Газовые котлы Termomax
Справочники по микросхемам - Marking (маркировка) – обозначение на электронных компонентах
Справочники по SMD компонентам
Опознать элемент в телевизоре (вопросы)
Справочники по SMD кодам компонентов
Маркировка SMD транзисторов от PHILIPS - Package (корпус) – вид корпуса электронного компонента
• SOT-89 – пластковый корпус для поверхностного монтажа
• SOT-23 – миниатюрный пластковый корпус для поверхностного монтажа
• TO-220 – корпус для монтажа (пайки) в отверстия
• SOP (SOIC, SO, TSSOP) – миниатюрные корпуса для поверхностного монтажа - Programmer (программатор) – устройство для записи (считывания) информации в память или другое устройство
Ниже список некоторых программаторов:
• Postal-2,3 – универсальный программатор по протоколам I2C, SPI, MW, IСSP и UART. Подробно – Postal – сборка, настройка
• TL866 (TL866A, TL866CS) – универсальный программатор через USB интерфейс
• CH341A – самый дешевый (не дорогой) универсальный программатор через USB интерфейс - • DIP (Dual In Package) – корпус с двухрядным расположением контактов для монтажа в отверстия
• AC (Alternating Current) – Переменный ток
• DC (Direct Current) – Постоянный ток
• FM (Frequency Modulation) – Частотная модуляция (ЧМ)
• AFC (Automatic Frequency Control) – Автоматическое управление частотой - Как мне задать свой вопрос ?
После регистрации аккаунта на сайте Вы сможете опубликовать свой вопрос или отвечать в существующих темах. Участие абсолютно бесплатное.
Кто отвечает на вопросы ?
Ответ в тему TRIAC BTA41-600,что за ерунда ? как и все другие советы публикуются всем сообществом. Большинство участников это профессиональные мастера по ремонту и специалисты в области электроники.
Как найти нужную информацию ?
Возможность поиска по всему сайту и файловому архиву появится после регистрации. В верхнем правом углу будет отображаться форма поиска по сайту.
По каким маркам можно спросить ?
По любым. Наиболее частые ответы по популярным брэндам – LG, Samsung, Philips, Toshiba, Sony, Panasonic, Xiaomi, Sharp, JVC, DEXP, TCL, Hisense, и многие другие в том числе китайские модели.
Что еще я смогу здесь скачать ?
При активном участии в форуме Вам будут доступны дополнительные файлы и разделы, которые не отображаются гостям – схемы, прошивки, справочники, методы и секреты ремонта, типовые неисправности, сервисная информация.
а реле твердотельное навесить вместо того что бы через него гнать нагрузку – не пробовал?
NickName
mr.vai
там светик ик на входе с стабом тока в коробочке этой и детектор нуля фазы (вроде так называется) . дальше думайте сами подойдёт он вооще к этой коробочке.
Добавлено 08-02-2016 15:29
ссылка скрыта от гостей
сделали бы и не лохматили бабушку
NickName
Внутри этой коробочки оптопара, схема типа как здесь на шестой странице ссылка скрыта от гостей
Добавлено 08-02-2016 18:51
В центре ЧипДиповский.
Недели две назад спросил у китайца “Оригинал или подделка-ремаркинг? Фото товара или левое?” – до сих пор молчит зараза
ARTEM27
На Иванова 17 ,Ленина 48 в городе Новосибирске конечно же.
Но хочу еще на Ali заказать.
Добавлено 08-02-2016 17:27
Внутри этой коробочки оптопара, схема типа как здесь на шестой странице ссылка скрыта от гостей
Это все понятно. Тут ситуация такая ,что дорого это в крупных маштабах.Я регулятор на ATtiny 26 сам забацал.И железо и прогу.
Для этого триака. Для наших нужд триак самое дешовое. А твердотелка это дорого.
То есть я так понимаю брак присутствует в крупных масшатабах ?
Добавлено 08-02-2016 17:29
Почему ты решил ,что при этой схеме триак тоже умирать не будет ?
Добавлено 08-02-2016 17:31
Да и потом . не солидно это. на дворе век цифровых технологий. а там крутилка . не айс.
Добавлено 08-02-2016 17:32
Просьба к тебе ! Если китаец твой ответит ,дай знать.
NickName
Что-то я не нашёл у них на сайтах его. В какую цену брал? На моей фотке выше на какой из трёх похож?
Китаец вряд ли ответит, цена уж больно низкая. Хотя он может так и стоит, лень искать мировые цены на них.
Илья Николаич
Paidj
А вот такой вариант управления тоже дорого.
NickName
ARTEM27
Почему именно TRIAC BTA41-600. Когда создавал тему из головы вылетело,что четыре лампы по 1200 вт включены параллельно.Извиняюсь конечно ,что ввел в заблуждение.Просто с этой проблемой мозг уже кипел вчера.Итого 22 ампера. Решили взять с запасом ТРИАК. А он вот такую свинку подложил.
Добавлено 09-02-2016 05:45
Да ты правильно понял SSR дорого. Или ТРИАК заменить 150 р или SSR в сборе. Ремонт SSR это извращение.
Добавлено 09-02-2016 06:12
Схему выложу без проблем. Но программу не могу. Коммерческий проэкт. Собственность ООО “Сиб -Пресс”.
Хотя особо ничего внеземного там нет. В ATtiny 26 задействован один канал ШИМ. И INT0. INT0 для синхронизации с сетью.То есть как только пришел ноль ,запустить блок ШИМ ,и так при каждом нуле. В регистр OCR1A (при нажатии на кнопку убавить /прибавить ) кладем какое либо значение. Тем самым меняем скважность ШИМ при этом ШИМ синхронизирован с сетью. Так же ..регулятор имеет спосбность запоминать последнее значение и при включении доходить до него и останавливается.Писалось это все на языке СИ в AVRTool +WinAVR. Если интересно то могу дать инфу по которой я начинал учится писать на СИ.
Добавлено 09-02-2016 06:14
Я забыл поставить акцент на то что 4 лампы паралллелно. В этом посте первое сообщение.
Добавлено 09-02-2016 06:32
– один из заводов Харькова выпускал в 20 веке ПТМ – переключатель тиристорный (симисторный) маломощный. Управление было как “напрямую” чем-то менее мощным, так и герконовыми реле. ЧТо мешает найти ОДИН “старый совок” симистор (что-то типа ТС142-80-6) и проверить версию о браке (с учетом тока управления)?!
Благодарю за совет. Но это бессмысленно для нас. Так как физически они нам не удобны. Переделовать конструкцию никто не будет. В печи которая греет прессформу их надо 6 штук. И для каждого такого семистора ТС142-80-6 нужен отдельный радиатор или колдовать ,что то с изоляцией.Опять не практично. А BTA41-600 сидят на одном не большом радиаторе с воздушным охлаждением (в перспективе перейти на водное хотим) .Миниатюрно получается. Поэтому и не хотим от них отказыватся. Просто нужно понять ,есть у народа подобные проблемы с ними или нет ! Мож какие цепи хитрые для них нужны,или ктото поборол эту проблему если она была у него. Дальше уже будем умозаключения делать . что делать дальше.
А эксперементы с ТС142-80-6 съедят время.Но если такая хрень с BTA41-600 будет продолжатся ,то ничего не останется как переходить на что то типа ТС142-80-6.
Но подкупает то ,что некоторые BTA41-600 с сопротивлением и в 60 ом между G A1 заразы работают . но убивает ,то что покупаешь новые 10 штук и при проверке 7-8 в помойку уходят.