0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Соединение трехфазной цепи звездой

Расчет трехфазной цепи, соединенной звездой

Соединение в треугольник. Схема, определения

Соединение в звезду. Схема, определения

Если концы всех фаз генератора соединить в общий узел, а начала фаз соединить с нагрузкой, образующей трехлучевую звезду сопротивлений, получится трехфазная цепь, соединенная звездой. При этом три обратных провода сливаются в один, называемый нулевым или нейтральным. Трехфазная цепь, соединенная звездой, изображена на рис. 7. 1.

Провода, идущие от источника к нагрузке называют линейными проводами, провод, соединяющий нейтральные точки источника Nи приемника N’ называют нейтральным (нулевым) проводом.
Напряжения между началами фаз или между линейными проводами называют линейными напряжениями. Напряжения между началом и концом фазы или между линейным и нейтральным проводами называются фазными напряжениями.
Токи в фазах приемника или источника называют фазными токами, токи в линейных проводах — линейными токами. Так как линейные провода соединены последовательно с фазами источника и приемника, линейные токи при соединении звездой являются одновременно фазными токами.

ZN — сопротивление нейтрального провода.

Линейные напряжения равны геометрическим разностям соответствующих фазных напряжений

(7.1)

На рис. 7.2 изображена векторная диаграмма фазных и линейных напряжений симметричного источника.

Из векторной диаграммы видно, что

При симметричной системе ЭДС источника линейное напряжение больше фазного
в √3 раз.

Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке.
На рис. 7.3 изображена трехфазная цепь, соединенная треугольником. Как видно
из рис. 7.3, в трехфазной цепи, соединенной треугольником, фазные и линейные напряжения одинаковы.

Линейные и фазные токи нагрузки связаны между собой первым законом Кирхгофа для узлов а, b, с.

Линейный ток равен геометрической разности соответствующих фазных токов.
На рис. 7.4 изображена векторная диаграмма трехфазной цепи, соединенной треугольником при симметричной нагрузке. Нагрузка является симметричной, если сопротивления фаз одинаковы. Векторы фазных токов совпадают по направлению с векторами соответствующих фазных напряжений, так как нагрузка состоит из активных сопротивлений.

Из векторной диаграммы видно, что

,

Iл = √3 Iф при симметричной нагрузке.

Трехфазные цепи, соединенные звездой, получили большее распространение, чем трехфазные цепи, соединенные треугольником. Это объясняется тем, что, во-первых, в цепи, соединенной звездой, можно получить два напряжения: линейное и фазное. Во-вторых, если фазы обмотки электрической машины, соединенной треугольником, находятся в неодинаковых условиях, в обмотке появляются дополнительные токи, нагружающие ее. Такие токи отсутствуют в фазах электрической машины, соединенных по схеме «звезда». Поэтому на практике избегают соединять обмотки трехфазных электрических машин в треугольник.

Трехфазную цепь, соединенную звездой, удобнее всего рассчитать методом двух узлов.
На рис. 7.5 изображена трехфазная цепь при соединении звездой. В общем случае сопротивления фаз нагрузки неодинаковы (ZA ≠ ZB ≠ ZC )

Нейтральный провод имеет конечное сопротивление ZN .
В схеме между нейтральными точками источника и нагрузки возникает узловое напряжение или напряжение смещения нейтрали.
Это напряжение определяется по формуле (7.2).

(7.2)

Фазные токи определяются по формулам (в соответствии с законом Ома для активной ветви):

(7.3)

Ток в нейтральном проводе

(7.4)

1. Симметричная нагрузка. Сопротивления фаз нагрузки одинаковы и равны некоторому активному сопротивлению ZA = ZB = ZC = R.
Узловое напряжение

,

потому что трехфазная система ЭДС симметрична, .

Напряжения фаз нагрузки и генератора одинаковы:

Фазные токи одинаковы по величине и совпадают по фазе со своими фазными напряжениями. Ток в нейтральном проводе отсутствует

В трехфазной системе, соединенной звездой, при симметричной нагрузке нейтральный провод не нужен.

На рис. 7.6 изображена векторная диаграмма трехфазной цепи для симметричной нагрузки.

2. Нагрузка несимметричная, RA

мтомд.инфо

Соединение трехфазной цепи звездой

Соединение обмоток генератора и приемников энергии звездой представляет собой схему, когда концы фаз соединяются в общий узел, а их начала присоединяются к линейным проводам

Схема соединения звезда

Провод OO’ называется нулевым или нейтральным, остальные — линейными. Введем следующие понятия:

  • Iллинейный ток — это ток протекающий по линейному проводу;
  • Uллинейное напряжение — это напряжение между линейными проводами;
  • Iффазный ток — это ток, протекающий от начала к концу фазной обмотки или приемника энергии (или наоборот: от конца — к началу);
  • Uффазное напряжение — это напряжение между началом и концом фазной обмотки или приемника энергии. Другими словами можно сказать: фазное напряжение — это напряжение между линейным и нулевым проводами.
Читать еще:  Переходник с колокольчиков на скарт

При симметричной нагрузке нулевой провод практически не нужен, так как ток Io в нем равен нулю. Поэтому, в этих случаях применяют трехпроводные системы (соединение треугольником). При несимметричной трехфазной нагрузке нулевой провод обеспечивает постоянство напряжений на фазах.

По рисунку может показаться, что линейное напряжение вдвое больше фазного. Но это не так. Линейное напряжение равно не алгебраической сумме, а геометрической разности.

Для того чтобы получить вектор линейного напряжения, например Uл (АВ), нужно к концу вектора UфА подстроить вектор UфВ с обратным знаком. Вектор, соединяющий начало координат с концом вектора UфВ, и будет вектором линейного напряжения Uл (АВ). Аналогично ведется построение векторов линейных напряжений Uл (ВС) и Uл (АС).

Векторная диаграмма линейных и фазных напряжений

В результате построений образовалась трехлучевая звезда линейных напряжений, повернутых относительно звезды фазных напряжений на угол 30° против часовой стрелки. Из полученных таким образом треугольников с тупым углом в 120° следует:

Для симметричной системы:

Если линейное напряжение, например, равно 380 В, то фазное будет:

Если же фазное напряжение Uф = 127В, то линейное будет:

Соединение трехфазной цепи звездой

Трехфазная цепь является частным случаем многофазных электрических систем, представляющих собой совокупность электрических цепей, в которых действуют ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на определенный угол. Отметим, что обычно эти ЭДС, в первую очередь в силовой энергетике, синусоидальны. Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной. Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, т.е. фаза – это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке.

Таким образом, понятие «фаза» имеет в электротехнике два различных значения:

  • фаза как аргумент синусоидально изменяющейся величины;
  • фаза как составная часть многофазной электрической системы.

Разработка многофазных систем была обусловлена исторически. Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений.

Важнейшей предпосылкой разработки многофазных электрических систем явилось открытие явления вращающегося магнитного поля (Г.Феррарис и Н.Тесла, 1888 г.). Первые электрические двигатели были двухфазными, но они имели невысокие рабочие характеристики. Наиболее рациональной и перспективной оказалась трехфазная система, основные преимущества которой будут рассмотрены далее. Большой вклад в разработку трехфазных систем внес выдающийся русский ученый-электротехник М.О.Доливо-Добровольский, создавший трехфазные асинхронные двигатели, трансформаторы, предложивший трех- и четырехпроводные цепи, в связи с чем по праву считающийся основоположником трехфазных систем.

Источником трехфазного напряжения является трехфазный генератор, на статоре которого (см. рис. 1) размещена трехфазная обмотка. Фазы этой обмотки располагаются таким образом, чтобы их магнитные оси были сдвинуты в пространстве друг относительно друга на эл. рад. На рис. 1 каждая фаза статора условно показана в виде одного витка. Начала обмоток принято обозначать заглавными буквами А,В,С, а концы- соответственно прописными x,y,z. ЭДС в неподвижных обмотках статора индуцируются в результате пересечения их витков магнитным полем, создаваемым током обмотки возбуждения вращающегося ротора (на рис. 1 ротор условно изображен в виде постоянного магнита, что используется на практике при относительно небольших мощностях). При вращении ротора с равномерной скоростью в обмотках фаз статора индуцируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся вследствие пространственного сдвига друг от друга по фазе на рад. (см. рис. 2).

Трехфазные системы в настоящее время получили наибольшее распространение. На трехфазном токе работают все крупные электростанции и потребители, что связано с рядом преимуществ трехфазных цепей перед однофазными, важнейшими из которых являются:

Читать еще:  Копировальный станок по дереву своими руками видео

— экономичность передачи электроэнергии на большие расстояния;

— самым надежным и экономичным, удовлетворяющим требованиям промышленного электропривода является асинхронный двигатель с короткозамкнутым ротором;

— возможность получения с помощью неподвижных обмоток вращающегося магнитного поля, на чем основана работа синхронного и асинхронного двигателей, а также ряда других электротехнических устройств;

— уравновешенность симметричных трехфазных систем.

Для рассмотрения важнейшего свойства уравновешенности трехфазной системы, которое будет доказано далее, введем понятие симметрии многофазной системы.

Система ЭДС (напряжений, токов и т.д.) называется симметричной, если она состоит из m одинаковых по модулю векторов ЭДС (напряжений, токов и т.д.), сдвинутых по фазе друг относительно друга на одинаковый угол . В частности векторная диаграмма для симметричной системы ЭДС, соответствующей трехфазной системе синусоид на рис. 2, представлена на рис. 3.

Из несимметричных систем наибольший практический интерес представляет двухфазная система с 90-градусным сдвигом фаз (см. рис. 4).

Все симметричные трех- и m-фазные (m>3) системы, а также двухфазная система являются уравновешенными. Это означает, что хотя в отдельных фазах мгновенная мощность пульсирует (см. рис. 5,а), изменяя за время одного периода не только величину, но в общем случае и знак, суммарная мгновенная мощность всех фаз остается величиной постоянной в течение всего периода синусоидальной ЭДС (см. рис. 5,б).

Уравновешенность имеет важнейшее практическое значение. Если бы суммарная мгновенная мощность пульсировала, то на валу между турбиной и генератором действовал бы пульсирующий момент. Такая переменная механическая нагрузка вредно отражалась бы на энергогенерирующей установке, сокращая срок ее службы. Эти же соображения относятся и к многофазным электродвигателям.

Если симметрия нарушается (двухфазная система Тесла в силу своей специфики в расчет не принимается), то нарушается и уравновешенность. Поэтому в энергетике строго следят за тем, чтобы нагрузка генератора оставалась симметричной.

Схемы соединения трехфазных систем

Трехфазный генератор (трансформатор) имеет три выходные обмотки, одинаковые по числу витков, но развивающие ЭДС, сдвинутые по фазе на 120°. Можно было бы использовать систему, в которой фазы обмотки генератора не были бы гальванически соединены друг с другом. Это так называемая несвязная система. В этом случае каждую фазу генератора необходимо соединять с приемником двумя проводами, т.е. будет иметь место шестипроводная линия, что неэкономично. В этой связи подобные системы не получили широкого применения на практике.

Для уменьшения количества проводов в линии фазы генератора гальванически связывают между собой. Различают два вида соединений: в звезду и в треугольник. В свою очередь при соединении в звезду система может быть трех- и четырехпроводной.

Соединение в звезду

На рис. 6 приведена трехфазная система при соединении фаз генератора и нагрузки в звезду. Здесь провода АА’, ВВ’ и СС’ – линейные провода.

Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной (на рис. 6 N и N’ – соответственно нейтральные точки генератора и нагрузки).

Провод, соединяющий нейтральные точки генератора и приемника, называется нейтральным (на рис. 6 показан пунктиром). Трехфазная система при соединении в звезду без нейтрального провода называется трехпроводной, с нейтральным проводом – четырехпроводной.

Все величины, относящиеся к фазам, носят название фазных переменных, к линии — линейных. Как видно из схемы на рис. 6, при соединении в звезду линейные токи и равны соответствующим фазным токам. При наличии нейтрального провода ток в нейтральном проводе . Если система фазных токов симметрична, то . Следовательно, если бы симметрия токов была гарантирована, то нейтральный провод был бы не нужен. Как будет показано далее, нейтральный провод обеспечивает поддержание симметрии напряжений на нагрузке при несимметрии самой нагрузки.

Поскольку напряжение на источнике противоположно направлению его ЭДС, фазные напряжения генератора (см. рис. 6) действуют от точек А,В и С к нейтральной точке N; — фазные напряжения нагрузки.

Линейные напряжения действуют между линейными проводами. В соответствии со вторым законом Кирхгофа для линейных напряжений можно записать

Читать еще:  Основные кристаллические решетки металлов

Соединение трехфазной цепи звездой

При соединении звездой концы всех трех обмоток генератора объединяют в одну общую точку, которая называется нейтральной точкой генератора или нейтралью. Также поступают и с приемниками, которые образуют нейтральную точку (нейтраль) трехфазного приемника. При этом три обратных провода отдельных фаз объединяются в один, и система из шестипроводной становится четырехпроводной, как это показано на рис. 4.2.

Провода, идущие от генератора к приемникам, называются линейными, а провод, соединяющий нейтральные точки генератора и приемника, называется

нейтральным. Показанные на этом рисунке направления действия ЭДС, токов и напряжений соответствуют направлениям, принятым в большинстве учебников по теории цепей.

Трехфазная цепь, связанная звездой, имеет ряд особенностей.

  • 1. Токи линейных проводов, не разветвляясь, попадают в фазы приемников, поэтому фазные токи равны токам в линейных проводах: = / ,.
  • 2. Ток в нейтральном проводе IN равен алгебраической сумме комплексных токов всех трех фаз. В соответствии с 1-м законом Кирхгофа для нейтральной точки приемника ( 0′) имеем

При отсутствии или обрыве нейтрального провода получаем

В этом случае, зная два линейных тока, можно легко найти третий ток.

Рис. 4. 2. Трехфазная цепь, связанная звездой

3. Если генератор вырабатывает симметричную систему фазных ЭДС

(рис. 4.1,6) и, кроме того, комплексные сопротивления всех трех фаз цепи одинаковы то комплексные токи, определяемые в

соответствии с формулой закона Ома (/ф = Uф /Z ф ), имеют одинаковые действующие значения и сдвинуты друг относительно друга по фазе на 120° (как это показано на рис. 4.2,6). Они образуют симметричную систему фазных токов и при этих условиях 14 + Iв + 1С = 0. Следовательно, ток в нейтральном проводе отсутствует и этот провод фактически не нужен.

Рассмотренный выше режим работы трехфазной цепи называется симметричным. В этом режиме работают все трехфазные приемники (например, трехфазные двигатели, нагревательные печи). Они имеют три одинаковые обмотки и не нуждаются в нейтральном проводе. Такие трехфазные приемники называют симметричными. Однофазные же приемники (лампы освещения, бытовые приборы) при соединении их звездой требуют наличия нейтрального провода для поддержания одинакового напряжения на всех трех фазах цепи.

  • 4. Трехфазные цепи, связанные звездой, широко используются в электроэнергетике для передачи электромагнитной энергии на большие расстояния. Возможная несимметрия в ЛЭП компенсируется нейтральным проводом, в качестве которого используется земля (система с заземленной нейтралью).
  • 5. При связывании звездой (рис. 4.2) различают фазные и линейные напряжения. Фазные напряжения (0 4,UB,UC) действуют между началом и концом каждой фазы. Их направление принято в соответствии с направлением фазных токов цепи — от начала фазы к ее концу (к нейтральной точке 0′). Линейные напряжения AB,UBC,UCA) действуют между линейными проводами. Их направление принято по часовой стрелке.

В соответствии со вторым законом Кирхгофа для каждого из трех контуров, образованных одним линейным и двумя фазными напряжениями, имеем

Для построения, например, вектора линейного напряжения UАВ надо сложить в соответствии с формулами (4.4) вектор фазного напряжения U 4 с вектором Uв, взятым с обратным знаком: UАВ = U 4 + (

В). Если полученный таким образом вектор UАВ перенести параллельно самому себе так, чтобы его конец совпал с концом вектора U л, то его начало совпадет с концом вектора

Рис. 4.3. Векторная диаграмма симметричной цепи, соединенной звездой

Аналогичным образом следует поступить и при построении векторов вс и UCA: 0вс =0в + (-Uс); UСА =UC + (-UА), как это показано на векторной диаграмме рис. 4.3. Перенеся эти векторы параллельно самим себе аналогично предыдущему, получим, что вектор линейного напряжения Uвс расположится между концами векторов фазных напряжений Uв и С, а вектор линейного напряжения UСА — между концами векторов фазных напряжений

В частном случае, если система векторов фазных напряжений симметрична, то система векторов линейных напряжений также симметрична и образует равносторонний треугольник, из геометрии которого следует, что действующие значения (длины векторов) линейных напряжений в V3 раз больше действующих значений фазных напряжений.

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector