453 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Кинематическая схема планетарного редуктора

Детали машин

Планетарные зубчатые передачи

Общие сведения о планетарных передачах

Планетарными называют передачи, имеющие зубчатые колеса с подвижными осями. Отличительной особенностью механизмов, включающих планетарную передачу (или передачи), является наличие двух или более степеней свободы. При этом угловая скорость любого звена передачи определяется угловыми скоростями остальных звеньев.

Наибольшее распространение получила простая одинарная планетарная передача (рис. 1), которая состоит из центрального колеса 1 с наружными зубьями, неподвижного центрального колеса 3 с внутренними зубьями; сателлитов 2 – колес с наружными зубьями, зацепляющихся одновременно с колесами 1 и 3 (на рис. 1 число сателлитов с = 3), и водила Н, на котором закреплены оси сателлитов. Водило соединено с тихоходным валом. В планетарной передаче одно колесо неподвижно (соединено с корпусом). Обычно внешнее центральное колесо с внутренними зубьями называют коронным (коронная шестерня или эпицикл), а внутреннее колесо с внешними зубьями – солнечным колесом (солнечная шестерня или солнце).

При неподвижном колесе 3 вращение колеса 1 вызывает вращение сателлитов 2 относительно собственных осей, а обкатывание сателлитов по колесу 3 перемещает их оси и вращает водило Н. Сателлиты таким образом совершают вращение относительно водила и вместе с водилом вокруг центральной оси, с. е. совершают движение, подобное движению планет. Поэтому такие передачи и называют планетарными.

При неподвижном колесе 3 движение передают чаще всего от колеса 1 к водилу Н, можно передавать движение от водила Н к колесу 1.

В планетарных передачах применяют не только цилиндрические, но и конические колеса с прямым или косым зубом.

Если в планетарной передаче сделать подвижными все звенья, т. е. оба колеса и водило, то такую передачу называют дифференциальной .
С помощью дифференциального механизма можно суммировать движение двух звеньев на одном или раскладывать движение одного звена на два других. Например, в дифференциале заднего моста автомобиля движение от водила Н передают одновременно колесам 1 и 3, что позволяет при повороте одному колесу вращаться быстрее другого.

Разновидности планетарных передач

Существует много различных типов и конструкций планетарных передач. Наиболее широко в машиностроении применяют однорядную планетарную передачу, схема которой показана на рисунке 1. Эта передача конструктивно проста, имеет малые габариты. Находит применение в силовых и вспомогательных приводах. КПД планетарной передачи η = 0,96…0,98 при передаточных числах u = 3…8.

Планетарные механизмы, в составе которых присутствуют одна или несколько планетарных передач подразделяются на однорядные, двухрядные и многорядные. Каждый набор из центральных зубчатых колёс и сателлитов, вращающихся в одной плоскости, образует так называемый планетарный ряд . Простой планетарный механизм с набором одновенцовых сателлитов является однорядным. Простые планетарные механизмы с двухвенцовыми сателлитами являются двухрядными. Сложные планетарные механизмы могут быть двух, трёх, четырёх и даже пятирядными.

Для получения больших передаточных чисел в силовых приводах применяют многоступенчатые планетарные передачи. На рис. 2,а планетарная передача составлена из двух последовательно соединенных однорядных планетарных передач. В этом случае суммарное передаточное число u = u1×u264, а КПД равен η = η1×η2 = 0,92…0,96.

На рисунке 2, б показана схема планетарной передачи с двухрядным (двухвенцовым) сателлитом, для которой при передаче движения от колеса 1 к водилу Н при n4 = передаточное число определяется из зависимостей:

В этой передаче u = 3…19 при КПД η = 0,95…0,97.

Как упоминалось выше, планетарные передачи, у которых все звенья подвижны, называют дифференциальными или просто дифференциалами.

Неизбежные погрешности изготовления приводят к неравномерному распределению нагрузки между сателлитами. Для выравнивания нагрузки в передачах с тремя сателлитами одно из центральных колес выполняют самоустанавливающимся в радиальном направлении (не имеющим радиальных опор). Для самоустановки сателлитов по неподвижному центральному колесу применяют сферические подшипники качения.
Высокие требования предъявляются к прочности и жесткости водила, при этом его масса должна быть минимальной. Обычно водила выполняют литыми или сварными.

Достоинства и недостатки планетарных передач

Основными достоинствами планетарных передач являются:

  • малые габариты и масса вследствие передачи мощности по нескольким потокам, численно равным количеству сателлитов. При этом нагрузка в каждом зацеплении уменьшается в несколько раз;
  • удобство компоновки в машинах благодаря соосности ведущего и ведомого валов;
  • работа с меньшим шумом, чем в обычных зубчатых передачах, что обусловлено меньшими размерами колес и замыканием сил в механизме. При симметричном расположении сателлитов силы в передаче взаимно уравновешиваются;
  • малые нагрузки на валы и опоры, что упрощает конструкцию опор и снижает потери в них;
  • возможность получения больших передаточных чисел при небольшом числе зубчатых колес и малых габаритах передачи.

Не лишены планетарные передачи и недостатков:

  • повышенные требования к точности изготовления и монтажа передачи;
  • большее количество деталей, в т. ч. подшипников, и более сложная сборка.

Область применения планетарных передач

Планетарные передачи применяют как редукторы в силовых передачах и приборах, в коробках передач автомобилей и другой самоходной техники, при этом передаточное число такой КПП может изменяться путем поочередного торможения различных звеньев (например, водила или одного из колес), в дифференциалах автомобилей, тракторов и т. п.

Широкое применение планетарные передачи нашли в автоматических коробках передач автомобилей благодаря удобству управления передаточными числами (переключением передач) и компактности. Можно встретить планетарные передачи и в механизмах привода ведущих колес современных велосипедов. Часто применяют планетарную передачу, совмещенную с электродвигателем (мотор-редуктор, мотор-колесо).

Передаточное число планетарных передач

При определение передаточного числа планетарной передачи используют метод остановки водила ( метод Виллиса ).
По этому методу всей планетарной передаче мысленно сообщается дополнительное вращение с частотой вращения водила nН , но в обратном направлении. При этом водило как бы останавливается, а закрепленное колесо освобождается. Получается так называемый обращенный механизм, представляющий собой обычную непланетарную передачу, в которой геометрические оси всех колес неподвижны. Сателлиты при этом становятся промежуточными (паразитными) колесами, т. е. колесами, не влияющими на передаточное число всего механизма.
Передаточное число в обращенном механизме определяется как в духступенчатой передаче с одним внешним и вторым внутренним зацеплением.

Читать еще:  Редуктор для метана на баллон

Здесь существенное значение имеет знак передаточного числа. Передаточное число считают положительным, если в обращенном механизме ведущее и ведомое звенья вращаются в одну сторону, и отрицательным, если в разные стороны. Так, для обращенного механизма передачи по рис. 1 имеем:

где z – числа зубьев колес.

В рассматриваемом обращенном механизме знак минус показывает, что колеса 2 и 3 вращаются в обратную сторону по отношению к колесу 1.

В качестве примера определим передаточное число для планетарной передачи, изображенной на рис. 1, при передаче движения от колеса 1 к водилу Н. Мысленная остановка водила в этой передаче равноценна вычитанию его частоты nН из частоты вращения колес.
Тогда для обращенного механизма этой передачи имеем:

Для планетарной передачи, у которой колесо 3 закреплено в корпусе неподвижно ( n3 = ), колесо 1 является ведущим, а водило Н – ведомым.
Тогда получим передаточное число такой передачи:

Подбор чисел зубьев планетарных передач

В отличие от обычных зубчатых передач расчет планетарных начинают с подбора чисел зубьев на колесах и сателлитах. Рассмотрим последовательность подбора чисел зубьев на примере планетарной передачи, изображенной на рис. 1.

Число зубьев z1 центральной шестерни 1 задают из условия неподрезания ножки зуба: z117. Принимают z1 = 24 при Н350 НВ; z1 = 21 при Н52 HRC и z1 = 17 при Н > 52 HRC.

Число зубьев неподвижного центрального колеса 3 определяют по заданному передаточному числу u :

Число зубьев z2 сателлита 2 вычисляют из условия соосности, в соответствии которым межосевые расстояния aw зубчатых пар с внешним и внутренним зацеплением должны быть равны.
Из рис. 1 для немодифицированной прямозубой передачи:

где d = mz – делительные диаметры колес.

Так как модули зацеплений планетарной передачи одинаковые, то формула (1) принимает вид:

Полученные числа зубьев z1 , z2 , и z3 проверяют по условиям сборки и соседства.

Условие сборки требует, чтобы во всех зацеплениях центральных колес с сателлитами имело место совпадение зубьев со впадинами, в противном случае собрать передачу будет невозможно. Установлено, что при симметричном расположении сателлитов условие сборки удовлетворяется, когда сумма зубьев центральных колес (z1 + z3) кратна числу сателлитов с = 2…6 (обычно с = 3), т. е. должно соблюдаться условие:

Условие соседства требует, чтобы сателлиты не задевали зубьями друг друга. Для этого необходимо, чтобы сумма радиусов вершин зубьев соседних сателлитов, равная da2 = m(z2 + 2 ) , была меньше расстояния l между их осями (рис. 1), т. е.:

где u’ = z2/z1 – передаточное число рассчитываемой пары колес;
Кc = 1,05…1,15 – коэффициент неравномерности распределения нагрузки между сателлитами;
Т1 – вращающий момент на валу центральной шестерни, Нм;
с – число сателлитов;
ψba – коэффициент ширины венца колеса:
ψba = 0,4 для Н350 НВ;
ψba = 0,315 при 350 НВ 50 HRC.

Ширина b3 центрального колеса 3 определяется по формуле b3 = ψbaaw .
Ширину b2 венца сателлита принимают на 2…4 мм больше значения b3 ; ширина центральной шестерни b1 = 1,1 b2 .

Модуль зацепления определяют по формуле:

Получнный расчетом модуль округляют до ближайшего стандартного значения, а затем уточняют межосевое расстояние:

Окружную силу Ft в зацеплении вычисляют по формуле:

Радиальную силу Fr определяют по формуле:

где αw = 20˚ – угол зацепления.

Планетарный редуктор: принцип работы, характеристики и разновидности этого устройства

Двухступенчатый планетарный редуктор представляет собой конструкцию, составленную из шестеренок и других рабочих элементов, которые приводятся в движение посредством зубчатой передачи. При этом двигаются они по принципу, который заложен в механике вращения планет – вокруг одного центра. По этой причине центральная шестерня именуется «солнечной», промежуточные — «сателлитами», а внешняя с внутренним зубчатым сцеплением — «коронной». Кроме этого, самый простой планетарный редуктор состоит из водила. Оно предназначено для фиксации сателлитов относительно друг друга, чтобы они двигались вместе.

Для правильной работы устройства необходимо, чтобы одна из составляющих его частей была жестко закреплена на корпусе. В планетарном редукторе, который оснащен водилом, статической частью является именно оно. Кроме этого, жестко закрепленным может быть коронная или солнечная шестеренки. В случае если ни одна из частей этого устройства не закреплена, имеется возможность расщепления одного движения на несколько, либо слияние двух в одно.

При этом в сцепке с ведущим и ведомым валом может быть как коронная, так и солнечная шестерни, или сателлиты. Этот механизм может осуществлять повышение передаточного числа и снижение крутящего момента и на оборот.

За счет такой конструкции обеспечивается движение ведомого и ведущего валов в одном направлении.

Назначение и конструкция редуктора

Служит редуктор для обеспечения понижения передачи и при этом повышения силы крутящего момента. Для обеспечения работы этого механизма вращающийся вал присоединяется к его ведомому элементу.

Это устройство в классическом исполнении состоит из червячных или зубчатых пар, центрирующих подшипников, различных уплотнений, сальников и т.д. Примером планетарного редуктора является шариковый подшипник. Корпус устройства сложен из двух элементов:

Читать еще:  Какие виды редукторов бывают

Смазка всех составных элементов этого устройства производится путем разбрызгивания масла, но в некоторых особенных устройствах это осуществляется при помощи масляного насоса в принудительном порядке.

Принцип работы

То, как будет функционировать этот агрегат зависит от кинематической схемы привода. Так подводку вращательного движения можно осуществлять к любому элементу этой системы, а снятие производить с какого-либо из оставшихся. Передаточное число зависит от того, согласно какой схемы организована подводка и съем вращательного движения.

Понимание того, как работает подобный редуктор, позволяет оценить сложность ремонта и восстановления.

Разновидности планетарных редукторов

В зависимости от количества ступеней, которые они имеют планетарные редукторы подразделяют на:

Одноступенчатые более простые и при этом компактнее, меньше по размерам в сравнении с многоступенчатыми, обеспечивают более широкие возможности по передаче крутящего момента, достижения разных передаточных чисел. Обладающие несколькими ступенями являются достаточно громоздкими механизмами, при этом диапазон передаточных чисел, которые ими могут быть обеспечены, существенно меньше.

В зависимости от сложности конструкции они могут быть:

Кроме этого, планетарные редукторы в зависимости от формы корпуса, используемых элементов и внутренней конструкции могут быть:

Через них может передаваться движение между параллельными, пересекающимися и перекрещивающимися валами.

Характеристики основных разновидностей этого устройства

Цилиндрические

Самые распространенные. Коэффициент полезного действия этих устройств достигает 95%. Они могут обеспечивать передачу достаточно больших мощностей. Передача движения осуществляется между параллельными и соосными валами. Они могут оснащаться прямозубными, косозубными и шевронными зубчатыми колесами. Коэффициент передачи может колебаться в пределах от 1,5 до 600.

Конические

Такое название они носят потому, что в них используются шестеренки, которые имеют коническую форму. Это обеспечивает плавность сцепки и способность выдерживать достаточно большие нагрузки. Могу иметь одну, две и три ступени. Валы в этой разновидности редукторов могут располагаться как горизонтально, так и вертикально.

Волновые

Они представляют собой конструкцию с гибким промежуточным числом. Состоят они из генератора волн, эксцентрика или кулачка, который обеспечивает растяжение гибкого колеса до достижения его контакта с неподвижным. При этом гибкое колесо имеет наружные зубья, а неподвижное — внутренние.

К достоинствам такого типа редукторов относится:

  • плавность хода;
  • высокое передаточное число;
  • возможность передачи движения через герметичные и сплошные стенки.

Они могут быть одно- и многоступенчатыми. Высокоскоростные оснащены подшипниками скольжения, а низкоскоростные — подшипниками качения.

Достоинства планетарных редукторов

  • Небольшой вес;
  • Широкий диапазон передаточных чисел;
  • Относительная компактность;
  • Собрать и починить такое устройство можно своими руками.

Советы по подбору планетарного редуктора

Главное в этом деле — правильно произвести расчет основных параметров нагрузки и существующих условий эксплуатации этого устройства.

Выбор производиться в зависимости от:

  • типа передачи;
  • максимально допустимых осевых и консольных нагрузок;
  • типоразмера этого устройства;
  • диапазона температур, в которых редуктор может использоваться длительный период и не терять при этом своих полезных качеств и свойств.

Делаем планетарный редуктор своими руками

Первым делом производится проектирование будущей конструкции в зависимости от конструктивных особенностей изделия и задач, которые планируется решать с его использованием. При этом производится расчет таких параметров как передаточное число, расположение валов, количество ступеней и т.д.

Далее производится определение межосевого расстояния. Этот показатель очень важен, так как указывает на способность передавать крутящий момент. Температура внутри устройства во время его работы не должна быть выше, чем 80 градусов по Цельсию.

При конструировании планетарного редуктора производится также расчет:

  • числа передаточных ступеней;
  • количества сателлитных шестеренок и зубьев на них;
  • толщины шестеренок;
  • размещения осей в будущем механизме.

Кроме этого, осуществляется подбор шестеренок, которые выполнены из подходящего материала, расчет сил, которые будут присутствовать при функционировании механизма и проверочный расчет.

Не имея специального оборудования и условий, изготовить составные части этого устройства в условиях домашней мастерской не получится. Планетарный редуктор можно собрать из подобранных частей, которые без труда можно приобрести в торговой сети или на разборке.

Сборка также является делом достаточно непростым, для достижения успеха в этом деле необходимо иметь практический опыт ремонта подобных механизмов, их сборки и разборки, обладать теоретическими познаниями в механике, прочими знаниями и навыками.

Планетарные редукторы.

Редукторы с зубчатыми передачами, в которых имеются колеса с перемещающимися осями, называются планетарными. Планетарные передачи позволяют получить большие передаточные числа редукторов при малом числе зубчатых колес. Габариты планетарных редукторов меньше, чем габариты обычных редукторов при одинаковых передаточных числах и нагрузках. Планетарные передачи несколько сложнее в изготовлении.

Кинематические схемы планетарных редукторов.

Планетарные передачи с одновенцовыми (рис. 1 ) и двухвенцовыми (рис. 3) сателлитами, а также многоступенчатые передачи (рис. 2) имеют средние передаточные числа (2…30) и высокий КПД (0,9…0,97).

Одноступенчатый планетарный редуктор.

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, водило Н — ведомое. Центральное колесо 3 закреплено в корпусе.

Ведущий и ведомый валы вращаются в одну сторону.

Двухступенчатый планетарный редуктор. Схема 1.

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, водило Н2 — ведомое. Центральные колеса 3 и 6 закреплены в корпусе.

Ведущий и ведомый валы вращаются в одну сторону.

Двухступенчатый планетарный редуктор. Схема 2.

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, водило Н — ведомое. Центральное колесо 4 закреплено в корпусе. Колеса 2 и 3 жестко соединены между собой.

Читать еще:  Смазка для червячных редукторов

Ведущий и ведомый валы вращаются в одну сторону.

Двухступенчатый планетарный редуктор. Схема 3.

Рис. 4

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, центральное колесо 5 — ведомое. Центральное колесо 3 закреплено в корпусе, колеса 2 и 4 жестко соединены между собой.

Ведущий и ведомый валы вращаются при D5 D3 — в противоположные стороны.

Планетарные передачи с тремя центральными колесами (рис. 4) имеют большие передаточные числа (100… 200). С увеличением передаточного числа КПД резко снижается.

Двухступенчатый планетарный редуктор с кривошипом.

Планетарные передачи с кривошипами (рис. 5,6) имеют большие передаточные числа (100…200), но сравнительно низкие КПД.

Рис. 5

Валы расположены параллельно установочной плоскости корпуса.

Водило Н — ведущее, центральное колесо 4 — ведомое. Центральное колесо 2 закреплено в корпусе, колеса 1 и 3 жестко соединены между собой.

Ведущий и ведомый валы вращаются при D3 D2 — в противоположные стороны.

Одноступенчатый планетарный редуктор с кривошипом.

Рис. 6

Валы расположены параллельно установочной плоскости корпуса.

Водило Н — ведущее, вал с кривошипами К — ведомый. Центральное колесо 2 закреплено в корпусе.

Ведущий и ведомый валы вращаются в разные стороны.

Кинематическая схема волнового редуктора.

На рис. 7 дана схема волнового зубчатого редуктора.

Рис. 7

Генератор волн Н (кулачок и подшипник с гибкими кольцами) — ведущий, колесо 1 с гибким венцом — ведомое, колесо 2 закреплено в корпусе.

Планетарный редуктор

Планетарные редукторы относятся к механическим зубчатым передачам.

Механические передачи служат для передачи энергии на расстояние, как правило с преобразованием по скорости и моменту. В зубчатых передачах движение осуществляется благодаря непосредственному контакту зубчатых коле

Редуктор – это устройство преобразующее высокую угловую скорость вращения входного вала (от двигателя) в более низкую на выходном валу (к полезной нагрузке), повышая при этом вращающий момент.

Передаточное отношение (i) – это отношение угловой скорости ведущего вала к угловой скорости ведомого вала .

Планетарные редукторы – это механизмы в которых оси отдельных колес являются подвижными. Простейший планетарный редуктор, состоящий из четырех звеньев, изображен на рисунке 1. В этих редукторах колеса с подвижными осями вращения называются планетарными колесами или сателлитами (звено 1), а звено, на котором располагаются оси сателлитов, – водилом или планетарным водилом [H] (звено 2). Зубчатые колеса с неподвижными осями вращения называются солнечными или центральными (звено 3); неподвижное колесо – коронной шестерней, эпициклом или опорным колесом (звено 4). На практике, для повышения прочности планетарного редуктора, количество сателлитов увеличивают до максимально возможного. Планетарный редуктор, изображенный на рисунке 1, носит название редуктора Джемса.


Рис. 1. Простейший планетарный редуктор.

Передаточное отношение U от колеса 3 до водила H редуктора, при неподвижной коронной шестерне, имеет вид:

где, U – коэффициент передаточного отношения;
индекс (1) – указывает на что, что неподвижным является элемент 1, в данном случае это коронная шестерня;
индексы 3 и H – указывают, что расчет передаточного отношения от колеса 3 (солнечная шестерня) к водилу H;
r – радиусы колес, индексы указывают на радиус соответствующего колеса (r1 – радиус коронной шестерни);
z – количество зубьев шестерни, индексы указывают на количество зубьев соответствующего колеса);

На рисунке 2 изображен вид классического одноступенчатого планетарного редуктора:


Рис. 2 Одноступенчатый планетарный редуктор

При использовании планетарной передачи в качестве редуктора один из трёх её основных элементов фиксируется неподвижно, а два других служат в качестве ведущего и ведомого. Таким образом, передаточное отношение будет зависеть от количества зубьев каждого компонента, а также от того, какой элемент закреплён. Для получения самого большого передаточного отношения, неподвижным оставляют коронную шестерню, см. рисунок 3. Такие передачи как правило используют в планетарных мотор-редукторах, на транспорте и машиностроении.


Рис. 3. Анимация работы одноступенчатого планетарного редуктора, с неподвижным эпициклом

На практике широко применяются многоступенчатые планетарные редукторы. Давайте рассмотрим двигатель постоянного тока с планетарным редуктором. Для примера возьмем планетарный мотор-редуктор МРП42 производства ООО “Электропривод” с передаточным отношением 1/144. Такое большое передаточное отношение можно получить, используя редуктор с несколькими ступенями. На рисунке 4 изображена первая ступень.


Рис. 4. Первая ступень планетарного редуктора.

Вращение от мотора передается на водило через сателлиты первой ступени. На водиле первой ступени закреплена шестеренка передающая вращение дальше (на вторую ступень).

Передаточное отношение первого звена:

Вторая ступень, мало отличается от первой, см. рисунок 5.


Рис. 5. Вторая ступень планетарного редуктора

Передаточное отношение второго звена:

В третьей ступени установлены четыре сателлита, для увеличения нагрузочной способности на редуктор, вследствие чего уменьшен их диаметр, рисунок 6.

Передаточное отношение второго звена:


Рис. 6. Третья ступень планетарного редуктора.

Подсчет полного передаточного отношения, складывается из произведения передаточных отношений все звеньев, вошедших в состав редуктора:

Подсчитанное по формулам передаточное отношение соответствует заявленному для рассматриваемого в нашем примере мотор-редуктора.

Законченный вариант планетарного редуктора изображен на рисунке 7, в нем добавлен присоединительный фланец с установленным подшипником скольжения. В этом редукторе все шестерни выполнены из металла, что обуславливает продолжительный жизненный цикл изделия.


Рис. 7. Планетарный редуктор в сборе.

Приглашаем на выставку “МЕТАЛЛООБРАБОТКА-2018”

Приглашаем на выставку “Росупак-2017”

Приглашаем на выставку “Металлообработка-2017”

В продаже мотор-редукторы МРП, МРЦ

BMD-R – блоки дистанционного управления коллекторными двигателями постоянного тока

BMD-DIN – начат выпуск блоков управления коллекторными двигателями с креплением на DIN-рейку

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: