780 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет фундамента под станок

Пример расчета фундамента под оборудование

Рисунок 9 – Площадь подошвы фундамента

Данные для расчета.

*Учитывают степень динамичности машин с помощью коэффициента «α», изменяющегося от 0,3 до 1. Чем выше степень динамичности, тем меньше значение коэффициента «α» (приложение В).

1. Фундамент не должен давать значительной осадки, что достигается, если фактическое давление на грунт Р, кПа, основания системы «аппарат + фундамент» будет меньше нормативного

где Gм – вес фундамента:

V – объем фундамента, м 3

Н – общая высота фундамента, м

Н = 100 + 500 = 600 мм = 0,6 м

F – площадь фундамента, м 2

∆ – припуск на каждую сторону, ∆ = 0,1 м

F = (1880 + 2∙0,1)(1300 + 2∙0,1) = 6,36 м 2

V = 6,36∙0,6 = 3,8м 3

Р = (14,7 + 76)/0,5∙6,36 = 28,5 кН

2. Определяем возможное отклонение оси аппарата от оси фундамента – эксцентриситеты е и е1, которые не должны превышать 5% от соответствующей стороны фундамента

Из пропорций находим предельные эксцентриситеты е и е1, мм

е = 2080∙5/100 = 104мм

е1 = 1500∙5/100 = 75 мм

Расчет приспособлений для монтажа оборудования.

Расчет строп.

Стропы из стальных канатов применяются для соединения монтажных полиспастов с подъемно-транспортными средствами, якорями и строительными конструкциями, а также для строповки поднимаемого или перемещаемого оборудования и конструкций с подъемно-транспортными механизмами.

Для строповки тяжеловесного оборудования преимущественно используются инвентарные витые стропы, выполняемые в виде замкнутой петли, путем последовательной параллельной укладки перевитых между собой витков каната вокруг начального центрального витка. Эти стропы имеют ряд преимуществ: равномерность распределения нагрузки на все ветви, сокращение расхода каната, меньшая трудоемкость строповки. Технические данные рекомендуемых типов канатов приведены в приложении Г (таблица 1).

Канатные стропы рассчитываются в следующем порядке (рисунок 10).

1. Определяем натяжение в одной ветви стропа, кН:

где P – расчетное усилие, приложенное к стропу, без учета коэффициентов перегрузки и динамичности, кН;

m – общее количество ветвей стропа;

– угол между направлением действия расчетного усилия и ветвью стропа, которым задаемся исходя из поперечных размеров поднимаемого оборудования и способа строповки (этот угол рекомендуется назначать не более 45⁰, имея ввиду, что с его увеличением усилие в ветви стропа резко возрастает).

2. Находим разрывное усилие в ветви стропа, кН:

где kз коэффициент запаса прочности для стропа, в зависимости от типа стропа (приложении Г(таблица 2)).

3. По расчетному разрывному усилию, пользуясь таблицей 1.приложения Г, подбираем наиболее гибкий стальной канат и определяем его технические данные: тип и конструкцию, временное сопротивление разрыву, разрывное усилие и диаметр.

Рисунок 10. Расчетная схема.

Рассчитать стальной канат для стропа, применяемого при подъеме при подъеме горизонтального цилиндрического теплообменного аппарата массой Go=15000кг.

1. Определить натяжение одной ветви стропа, задаваясь общим количеством ветвей m = 4 и углом наклона их =45⁰ к направлению действия расчетного усилия P.

2. Находим разрывное усилие в ветви стропа.

3. По найденному разрывному усилию, пользуясь приложением Г (таблица 1), подбираем канат типа ЛК-РО конструкции 6х36(1+7+7/7+14) о.с. (ГОСТ7668-80) с характеристика:

временное сопротивление разрыву, МПа…………………..1960

масса 1000м каната, кг………………………………………. 2130

Расчет траверс.

В практике монтажа оборудования применяются траверсы двух видов – работающие на изгиб и на сжатие. Первые конструктивно более тяжелые, но обладают значительно меньшими высотными габаритами, что имеет существенное значение при подъеме оборудования в помещениях с ограниченной высотой, а также при недостаточных высотах подъема крюка грузоподъемного механизма.

Расчет траверс, работающих на изгиб.

1. Подсчитываем нагрузку, действующую на траверсу, кН

где GO – масса поднимаемого груза, кг,

2. Определяем изгибающий момент в траверсе,

где а – длина плеча траверсы, см.

3. Вычисляем требуемый момент сопротивления поперечного сечения траверсы, см 3 .

где m и R выбирают по приложению Г (таблицы 3 и 4).

Рисунок 11. Расчетная схема траверсы, работающей на изгиб.

4. Выбираем для траверсы сплошного сечения одиночный швеллер, двутавр или сплошную трубу, и по приложению Г (таблицы 5, 6, 7) определяем момент сопротивления WX, ближайший больший к WТР. В случае невозможности изготовления траверсы большого сечения при больших значениях WТР балки траверсы изготавливаются либо сквозного сечения из парных швеллеров или двутавров, а также из труб, усиленных элементами жесткости, либо, наконец, решетчатой конструкции.

Подобрать и рассчитать сечение балки траверсы, работающей на изгиб, для подъема ротора турбины массой GO =24тонны с расстоянием между стальными подвесками l = 4м (рисунок 11).

1. Подсчитываем нагрузку, действующую на траверсу:

2. Определяем изгибающий момент в траверсе:

3. Вычисляем требуемый момент сопротивления поперечного сечения траверсы:

4. Выбираем по табличным данным конструкцию балки траверсы сквозного сечения, состоящую из двух двутавров, соединенных стальными мостиками на сварке.

5. Подбираем по таблице ГОСТ (приложение Г таблица 5) два двутавра №40 с =953 см 3 , определяем момент сопротивления сечения траверсы в целом:

> WТР=1624 см 3

что удовлетворяет условию прочности расчетного сечения траверсы.

Дата добавления: 2018-05-12 ; просмотров: 4546 ;

Фундаменты под оборудование — особенности монтажа

Фундаменты под оборудование отличаются от оснований жилых или промышленных строений не только размерами. Суть различий кроется в самой конструкции таких фундаментов. Ведь такие основания ведь должны противостоять не только статическим (несущим), но и динамическим нагрузкам, источником которых является закрепленное на фундаменте оборудование.

К тому же, те условия, в которых эксплуатируется фундамент под оборудование, мягко говоря, далеки от идеала. Ведь помимо вибрации корпуса такое основание поглощает и массу агрессивных веществ – смазок, масел, охлаждающих жидкостей и прочих субстанций, действующих на тело фундамента самым разрушительным образом.

Но в этой статье мы расскажем вам не об отличиях между классическим основанием и фундаментом для оборудования, а о способе строительства конструкций, способных удержать и массу, и вибрацию любых станков и механизмов.

Устройство фундаментов под технологическое оборудование: общие правила

Сооружение фундамента под промышленное оборудование предполагает строительство конструкции с оригинальными качествами, а именно:

  • Значительной массой – чем больше вес основания, тем выше сопротивляемость вибрации.
  • Повышенной прочностью – чем выше стойкость к статическим и динамическим нагрузкам, тем больше период эксплуатации и самого фундамента, и смонтированного на основании оборудования.
  • Высокой устойчивостью к агрессивным средам – чем выше инертность хотя бы верхних слоев фундамента, тем дольше он прослужит в роли основания для станка или механизма.

Причем указанные характеристики дополняются еще и минимальными допусками по габаритам фундамента. То есть, на «своем месте» должны находиться не только болты, с помощью которых производится установка оборудования на фундамент – отклонения от расчетных габаритов (длинны, высоты, ширины) должны сводиться к минимуму.

Уклон ростверка должен отсутствовать в принципе. Иначе эксплуатационные нагрузки распределятся неравномерно, что уменьшит срок службы и основания и станины механизма.

Разновидности конструкций оснований

Подобный набор характеристик могут обеспечить только следующие разновидности конструкций фундаментов:

  • Бесподвальное основание плитного типа, гасящее вибрацию своей массой. Такие фундаменты можно залить в опалубку только на первом этаже цеха. Подобная конструкция обойдется в значительную сумму, поскольку на сооружение цельного основания плитного типа тратят максимальный объем строительного материала. Однако самые крупные станки и механизмы монтируют только на таких фундаментах.
  • Подвальное основание-перекрытие, монтируемое на втором этаже и выше. Такой фундамент гасит вибрацию, передавая колебания на каркас самого цеха (посредством контакта с межэтажным перекрытием). По сути – это такая же плита, только не залитая, а собранная из железобетонных изделий, установленных на балки межэтажного перекрытия. Подобное основание способно противостоять только статическим нагрузкам или вибрации с минимальной амплитудой.
  • Стенчатый фундамент, развивающий идею ленточного основания. Несущую нагрузку и вибрацию в данном случае принимают несущие стены или внутренние перегородки. Как правило, подобные фундаменты подводят под механизмы, расположенные на втором этаже цеха.
  • Основания рамного типа (с балочным ростверком). Такая конструкция выдерживает высокочастотную вибрацию. Поэтому в большинстве случаев фундаменты для ударных механизмов имеют «рамную» конструкцию. Ведь в опоры рамы можно вмонтировать демпферы, гасящие вибрацию.

Конструкционные материалы оснований

Разумеется, основания подобного качества невозможно соорудить из первого попавшегося стройматериала.

И в большинстве случаев такие фундаменты строят из:

  • Железобетона (методом заливки в опалубку).
  • Железобетонных блоков (методом сборки с перевязкой).
  • Металла (сборка свайной конструкции с рамным ростверком).
  • Железобетона и металла (бетонные сваи или блоки и металлический ростверк).
Читать еще:  Станки для переработки пластиковых бутылок

Подвальные, бесподвальные и стенчатые фундаменты создают из железобетона или железобетонных блоков. Причем железобетон производят на основе раствором М200-М300 (для станков с минимальной массой), или М300-М400 (для действительно тяжелого оборудования). Рамные основания можно собрать из любой разновидности вышеупомянутых материалов.

Расчет фундамента под оборудование

Любое строительство начинается с расчетов самой важной части дома – его фундамента. И сооружение нового рабочего места начинается с расчетов основания под станок или механизм.

В основе таких расчетов лежит сопоставление несущей способности грунта со статической и динамической нагрузкой, генерируемой установленным на фундаменте оборудованием. Причем передаваемая на площадь подошвы фундамента сумма статической и динамической нагрузки должна соответствовать несущей способности опорного грунта.

Характеристики грунта вычисляют на основе инженерно-геологических изысканий, в процессе которых определяют глубину залегания грунтовых вод, состав почвы, глубину промерзания и так далее.

Статическая нагрузка определяется массой оборудования, вычисляемой по спецификации станка или механизма. Динамическая нагрузка определяется по расчетному давлению на ростверк фундамента.

Причем указанное давление, генерируемое массой станка, корректируют с помощью двух коэффициентов:

  • Константы условий работы (от 0,5 для кузнечного молота, до 1,0 для токарно-винторезного станка).
  • Константы осадки грунта (от 0,7 до 1,0 – в зависимости от влажности почвы).

В итоге, зная массу станка, тип почвы и условия работы, можно высчитать (по несущей способности грунта) габариты основания.

Строительство основания для оборудования

Строительство простейшего основания плитного типа, под станок или маломощный пресс, происходит следующим образом:

  • Вначале следует определить месторасположение основания. Фундамент не должен соприкасаться со стенками, колоннами или внутренними перегородками самого здания. Минимальное расстояние от фундамента пресса до фундамента цеха равно 100 сантиметрам. Иначе вибрация перейдет на основание несущих стен, колон или перегородок.
  • После этого следует определить положение крепежных (фундаментных) болтов, фиксирующих станину пресса или станка. При этом нужно учитывать, что минимальное расстояние от края фундамента до оси болта рано 20 сантиметра. То есть, фундамент должен выступать за края станины, как минимум на 20-30 сантиметров.
  • Определив вышеупомянутые параметры можно приступать к земляным работам (рытью котлована). Причем глубина выемки грунта в не отапливаемом цеху равняется глубине промерзания + 25-40 сантиметров. В отапливаемом цеху глубина фундамента равняется 50-80 сантиметрам. Габариты самого котлована, равны ширине и высоте фундамента + глубина залегания подошвы. Ведь стенки котлована, как правило, обустраивают под наклоном в 45 градусов.
  • Завершив земляные работы можно заняться повышением несущей способности грунта, подсыпав на дно двухслойную песчано-гравиевую подушку (по 15-20 сантиметров на каждую фракцию).
  • Следующий этап – строительство опалубки, опоясывающей контур фундамента. Ее собирают из съемных металлических или деревянных щитов, соединенных поперечными стяжками.
  • На следующем этапе во внутреннюю полость основания вводят армирующий каркас (в основаниях для небольших станков можно обойтись без каркаса), а дно опалубки укрывают слоем гидроизоляции (рубероида). В особых случаях на дно основания укладывают особый материал, гасящий вибрацию (дубовый брус или что-то другое).
  • После этого внутреннюю полость заполняют бетоном, укладывая раствор слоями по 10-15 сантиметров.

Причем каждый слой тщательно утрамбовывается. Заливка и тамбовка каждого слоя должна завершиться до схватывания раствора (35-40 минут от момента введения бетона в опалубку).

  • В финале в верхний слой заливки вводят фундаментные болты с коническими или загнутыми торцами.

Фундамент считается готовым к эксплуатации спустя 25-30 дней от момента заливки. За это время монолит основания выйдет на расчетную прочность. Раньше этого срока оборудование на фундамент не монтируют.

Фундаменты под оборудование: особые требования, виды, проектирование, формулы расчета и особенности применения

На сегодняшний день существует СП для фундаментов под оборудование. СП – это свод правил, номер которого 26.13330.2012. Эти правила устанавливаю все необходимые требования, которые касаются не только практической части заливки фундамента, но и расчетной части, и проектировки.

Требования к фундаменту

Фундамент под оборудование должен соответствовать определенным требованиям, чтобы он мог успешно эксплуатироваться. Соблюдать их очень важно, так как обычно основание будет подвергаться воздействию агрессивных сред, динамическим нагрузкам, которые будет создавать промышленное оборудование, и т. д.

Необходимо, чтобы фундамент соответствовал следующим требованиям:

  • высокий порог прочности, чтобы выдерживать и статические, и динамические нагрузки, которые будет создавать устройство;
  • необходимо наличие такого свойства, как инертность или, другими словами, стойкость к химическим веществам;
  • фундамент под оборудование должен иметь огромную массу, чтобы он мог гасить вибрацию, которую будет создавать включенный механизм;
  • отклонения от плановых размеров должны быть минимальными, то есть фактические размеры должны практически полностью соответствовать расчетным показателям;
  • площадь опоры должна быть больше, чем у аппарата, устанавливаемого на основание.

Стоит отметить, что прочность и химическая стойкость – это те свойства, от которых напрямую зависит срок службы фундамента. Теми веществами, которые негативно влияют на фундамент, являются:

  • смазочные вещества;
  • жидкости для охлаждения устройств;
  • масла технического предназначения;
  • топливо разного рода.

Описание параметров

Кроме двух основных свойств, очень важно, чтобы фундамент под оборудование мог успешно гасить вибрации, которые создает рабочий механизм. Это является очень важной функцией, так как если вибрации будут постоянно воздействовать на основание и агрегат, то от этого снизится срок эксплуатации. В некоторых случаях это негативно будет сказываться даже на соседних устройствах. Сами по себе вибрации возникают из-за того, что в промышленных машинах постоянно работают неравномерно расположенные вращающиеся детали.

Что касается совпадений с проектом и расчетами, то здесь важно отметить, что кроме стандартных высоты, длины и ширины, должны совпадать даже места расположения креплений оборудования. Допускаются лишь самые минимальные расхождения между проектом и фактической конструкцией.

Здесь можно добавить, что устройство фундамента под оборудование, которое весит до 2 т и считается малогабаритным, не всегда необходимо. Если такой аппарат помимо небольшого веса еще и не вызывает сильных динамических нагрузок во время работы, то его можно монтировать непосредственно на железобетонный пол. В некоторых случаях можно установить его на межэтажное перекрытие.

Регламентации по обустройству

Выше были рассмотрены основные требования, которым должен удовлетворять любой фундамент, предназначенный для установки на нем промышленного оборудования. Однако существуют и другие требования – для фундамента под оборудование с динамическими нагрузками, которым он должен соответствовать.

  1. Проектировочные работы, как и практическая часть по обустройству основания, должны проводиться лишь компетентными специалистами, которые, кроме этого, имеют еще и опыт проведения данного вида работ.
  2. Для того чтобы создать правильный и полноценный проект, необходимо, чтобы в наличии были все требуемые данные.
  3. Во время устройства фундамента под оборудование необходимо периодически проводить контроль качества.
  4. Очень важно, чтобы действия всех участников рабочего процесса были строго скоординированы.
  5. Те фундаменты, что уже были возведены, должны эксплуатироваться лишь с тем оборудованием, для которого они предназначаются. Для этого имеется техническая документация.
  6. Для строительства можно использовать лишь те материалы, которые подходят по проектной документации.
  7. В будущем нужно проводить обслуживание фундамента, чтобы конструкция эксплуатировалась максимально долго.
  8. В качестве крепления рекомендуется использовать максимально простые детали. К примеру, это могут быть анкерные болты, которые вмуровываются в бетон.

Разные виды агрегатов

При устройстве фундамента под оборудование, необходимо понимать, что в настоящее время существует огромное количество разных машин, которые объединены в группы. Для каждой группы необходимо создавать основание по своим правилам и с разными требованиями.

В настоящее время существуют следующие виды групп, для которых нужно возводить отдельные фундамент.

  1. Агрегаты, у которых имеется криво-шатунный механизм. Сюда можно отнести поршневые компрессоры, лесопильные рамы и прочее.
  2. Отдельной группой выступают турбоагрегаты, к примеру, турбокомпрессоры.
  3. Некоторое электрическое оборудование, такое как моторы-генераторы также нуждаются в основании.
  4. Обустраивается фундамент под промышленное оборудование прокатного типа.
  5. Отдельной группой выступают станки для резки металла и прессы разного предназначения.

Виды оснований

Далее будут представлены разные виды оснований, которые используются для монтажа различного оборудования:

  1. Наиболее простой вариант – это фундамент-плита без подвала. Здесь существует ограничение, которое заключается в том, что установить такое основание можно лишь на первом этаже. Кроме того, плита получается достаточно дорогая, так как приходится тратить значительное количество средств на строительные материалы. Однако есть и хорошее преимущество, которые заключается в том, что фундамент отлично гасит вибрации.
  2. Второй вариант – это рамная основа, которая снабжена ростверком из балок. Данное основание характеризуется тем, что способно хорошо переносить колебания с высокой частотой. По этой причине очень часто применяется для монтажа механизмов, у которых наблюдается ударный принцип действия.
  3. Третий вариант – это ступенчатая опора. Такое основание возводится только со второго этажа. В данном случае нагрузка от оборудования будет передаваться внешними стенами, а также перегородками.
  4. Последняя разновидность фундамента под динамическое оборудование – это фундамент-перекрытие, имеющее подвал. Обустраивать такое основание можно лишь выше первого этажа. Все вибрации, которое будет создавать оборудование, в данном случае будет передаваться перекрытиям, то есть перекрытиям каркаса. Сам по себе фундамент способен выдерживать лишь незначительные колебания.
Читать еще:  Настройка инструмента вне станка с чпу

На сегодняшний день довольно популярными становятся такие основания, которые имеют пружины или же виброопоры другого типа. Они часто используются для установки механизмов, относящихся к легкому и среднему типу по своему весу. Существует такое приспособление, как демпфер, которое предназначено для гашения вибраций. Лучше всего оно подходит для установки под основы рамного типа. Стоит отметить, что фундамент под технологическое оборудование делится на два вида.

Первый тип – это бесподвальный фундамент. У него практически полностью отсутствует часть, которая располагается над полом. Второй же тип – подвальный, у которого данная часть развита достаточно сильно.

Фундаменты группового и индивидуального типа

На сегодняшний день фундаменты под монтаж оборудования могут быть индивидуальные и групповые.

Что касается группового вида, то данный фундамент предназначается для размещения нескольких промышленных агрегатов легкого или среднего веса – до 8 тонн. При этом у них должна быть жесткая станина, нормальная точность работы, а эксплуатироваться они должны в основном в статическом режиме. Толщина обычно составляет от 150 до 250 мм. Жестко станиной считается та, у которой соотношение длины к высоте – не более чем 2 к 1.

Что же касается строительства фундамента под оборудование индивидуального типа, то в данном случае на основание устанавливается механизм, масса которого позволяет его отнести к среднему или тяжелому классу. Кроме этого, обычно такие механизмы характеризуются динамическими нагрузками среднего или значительного класса. Такое основание не только успешно гасит вибрации, но и изолирует агрегаты друг от друга. Это важно, так как в таком случае отсутствует колебания между ними.

Можно добавить, что машины, которые имеют средний или легкий вес, а также характеризуются статическим периодом работы, нередко монтируются прямо на железобетонный пол или же перекрытие. Если необходимо такое основание, можно дополнительно усилить бетонной стяжкой, чтобы не заливать отдельный фундамент.

Какие материалы используются для строительства

Так как фундамент должен быть очень прочным, устойчивым к вибрациям, а также к воздействию химических веществ, то и расходные материалы должны быть высокого качества, чтобы получить хорошее основание. Для обеспечения результата используют следующие расходные материалы:

  • готовые железобетонные блоки, во время строительства их перевязывают друг с другом;
  • сам железобетон, который можно получить, если заливать арматурный каркас в опалубке;
  • понадобится качественный металл, если необходимо создавать свайные конструкции с ростверками в виде рамы.

Очень важно использовать качественный цемент для подвального и бесподвального фундамента. Если будут устанавливаться легкие агрегаты, то можно использовать марку М200 или М300. Если планируется монтаж тяжелого промышленного агрегата, то необходимо использовать марку М400. Цемент должен принадлежать к классу В15.

Стоит отметить, что при обустройстве фундамента в частном цеху или в домашней мастерской можно использовать в качестве исходного сырья бутовый камень. Редко, но все же иногда встречается фундамент кирпичного типа. То есть кирпичи укладываются на цементную основу. Здесь очень важно, чтобы грунтовые воды располагались достаточно глубоко. Чаще всего такая основа применяется только для тех машин, чья масса не превышает 4 тонн. Толщина фундамента обычно составляет минимум 50 см. Важно добавить, что в таком случае применение силикатного кирпича исключается.

Раньше довольно часто устанавливали легкие машины на деревянный пол, однако сейчас это практически исключено. Основной недостаток связан с тем, что дерево слишком сильно коробится, и очень быстро, из-за чего меняется форма основания. Деревянный пол можно использовать, но лишь в качестве временной основы.

Что касается крепления оборудования к основанию, то в данном случае всегда используется болтовое соединение, которое прописано в СП. Стоит лишь отметить, что если агрегат характеризуется высокими ударными нагрузками или сильными вибрациями во время работы, то используются болты не менее 42 мм, и съемного типа. Также очень важно, чтобы расстояние от нижнего конца болта до подошвы фундамента составляло не менее 10 см. На сегодняшний день популярным стало химическое анкерное крепление.

Проектирование

Проектирование фундаментов под оборудование – это первоначальный этап всей работы. В данном случае исходными данными для проведения проектировочных работ являются следующие факторы:

  • характеристики грунта, к примеру, глубина промерзания, расположение подземных вод, структура и т. д.;
  • статическая нагрузка;
  • сила вибраций или динамическая нагрузка;
  • опорная площадь станины самого оборудования;
  • важную роль играет температурный режим, при котором будет эксплуатироваться основа.

Еще одно важное требование, которое должен учитывать проектировщик – это воздействие агрессивных сред, а также защитные меры. Прежде чем начать строительство, необходимо провести гидрогеологическое инженерное исследование почвы, чтобы узнать ее характеристики. Если грунт считается рыхлым, то фундамент должен быть более массивным.

Расчетные работы

Расчет фундамента под оборудование – это следующий этап его строительства. Основой расчетов в данном случае станут два фактора. Первый из них – это несущая способность грунта, а второй – это статическая и динамическая нагрузка, которую будет оказывать монтируемое устройство. В данном случае необходимо рассчитать все так, чтобы сумма нагрузок статического и динамического типа, которые будут передаваться через подошву фундамента грунту, была равна несущей способности почвы.

При расчетах фундамента для оборудования важно вычислить статическую нагрузку. Она зависит от массы оборудования. Что касается расчетов динамической нагрузки, то она вычисляется по давлению, которое воздействует на ростверк фундамента. Стоит отметить, что давление, которое возникает из-за массы станка, необходимо корректировать, используя следующие коэффициенты:

  • постоянная условий работы, которая начинается от 0,5 для кузнечного молота и составляет до 1,0 для станка токарно-винторезного типа;
  • постоянная осадка грунта от 0,7 до 1,0, которая варьируется в зависимости от влажности почвы.

Зная все три необходимые составляющие, не составляет труда провести все требуемые расчеты, чтобы получить точные характеристики, необходимые для основания конкретного станка.

Армирование фундамента под оборудование

Для того чтобы качественно и правильно провести армирование фундамента, необходимо знать несколько основных пунктов:

  1. Чтобы добиться максимальной прочности от армирования, необходимо закреплять прутья в “клеточку”.
  2. В данном случае рекомендуется не использовать сварку для соединения прутьев, а скреплять их при помощи проволоки. Таким образом можно снизить количество швов и более хрупких соединений.
  3. Можно сделать конструкцию еще более прочной, если в углах конструкции загибать арматуру. Кроме того, само соединение лучше всего производить внахлест.

Стоит также отметить, что армирование фундамента разного типа производится разными методами. Наиболее трудоемкий – процесс армирования ленточного фундамента. Он требует больше всего затрат и строительных материалов. Можно проводить армирование плитного фундамента. Однако данный процесс достаточно сложный, а также требует высокой квалификации специалиста. Кроме того, рекомендуется иметь опыт такой работы.

Фундаменты под оборудование. Отличия от зданий. Исключения, классификация, материалы и расчеты. Варианты для ударных механизмов.

Чем фундаменты под оборудование отличаются от всех прочих? Есть ли какие-то особенности у их конструкции? Какие материалы могут применяться?

Отличия от фундаментов зданий

Действительно, почему промышленные фундаменты для станков должны чем-то отличаться от обычного основания для сарая?

Основных причины две.

  • Фундамент под оборудование испытывает, как правило, не только статические, но и динамические нагрузки. Говоря проще, ему предстоит гасить вибрацию от вращения, колебаний или ударов подвижных частей станков.
Читать еще:  Станок для производства перчаток китай цена

Важный момент: при установке некоторых видов оборудования вблизи жилых строений или в прочих случаях, когда передача значительных вибраций почве нежелательна, монтируется так называемый виброизолированный фундамент.
Ударная нагрузка гасится составными пружинами с противонаправленными витками внешней и внутренней частей или резиновыми вставками.

  • Промышленное оборудование – это, среди прочего, смазки и прочие технологические жидкости. Порой они достаточно агрессивны; при этом попадание их в почву крайне нежелательно.

Отсюда – особые требования к:

  • Массе и, соответственно, размерам фундамента. Чем он массивнее – тем меньше амплитуда передающихся ему колебаний.
  • Прочности. Ударная нагрузка быстро разрушит материалы со слабой устойчивостью к механическим воздействиям.
  • Стойкости к агрессивным средам. Присутствие смазок, антифризов и т.д. уже упоминалось.
  • Точности размеров. Понятно, что ставить кузнечный молот или гильотинные ножницы на основание с перепадами высоты – значит гарантированно снизить их ресурс и ускорить разрушение самого фундамента: динамическая нагрузка будет распределена крайне неравномерно.

Общие моменты

Исключения

Наряду с промышленным оборудованием, для которого характерны динамические нагрузки, существует огромное количество станков и машин, конструкция которых исключает ударные или эксцентрические воздействия на фундамент в процессе работы.

Типичный пример – паровой пресс для сушки дверных полотен под давлением после склейки фенолформальдегидной смолой. Несмотря на огромную массу подвижных частей, скорость их движения делает нагрузку на основание на протяжение всего производственного цикла статической.

Никаких особых требований к фундаменту, помимо устойчивости к статической массе оборудования и химической стойкости, у таких станков нет.

Классификация

Устройство фундаментов под технологическое оборудование зависит от массы станков или машин и от частоты вибраций, которые предстоит гасить основанию.

  • Массивные фундаменты наиболее распространены. Конструктивно они представляют собой сплошные блоки или плиты с выемками, шахтами и полостями. Понятно, что чем больше объем пустот, тем меньше цена фундамента; однако для сравнительно маломощного оборудования массивный фундамент чаще всего представляет собой простой монолит.
    Этот тип оснований повсеместно применяется для агрегатов с невысокой частотой вибраций.
  • Рамные конструкции, напротив, предназначены для того, чтобы эффективно гасить высокочастотные колебания. Рама, на которую опирается агрегат, соединяется с монолитным основанием стойками; именно они частично гасят вибрацию.

Массивные фундаменты, в свою очередь, могут классифицироваться еще по ряду критериев:

  • Бесподвальные сооружаются на нижнем этаже и минимально возвышаются над уровнем пола. Эта конструкция типична для всех тяжелых агрегатов.
  • Сплошные – представляют собой, что не трудно понять из названия, монолитный блок без полостей.
  • Стенчатые – выше уровня пола, представляют собой набор продольных и поперечных перегородок. Они легче и дешевле; при этом механическая прочность конструкции зачастую почти не уступает сплошному основанию.

Массивные фундаменты по технологии сооружения делятся на фундаменты с подливкой и без нее.

  • Подливка подразумевает, что оборудование выставляется по уровню на подставках (иногда регулируемых). Затем пространство между основанием агрегата и поверхностью фундамента заливается жидким бетоном.

Материалы

Для массивных фундаментов сейчас применяется только и исключительно железобетон. Вместе с тем около века назад для промышленного оборудования широко использовались кирпичные или каменные фундаменты . Марка применяемого бетона – не ниже М200; в отдельных случаях при особо сильных вибрационных нагрузках рекомендуется использовать бетон не хуже М300.

Однако: для легких машин, при работе которых не генерируются значительные вибрации (к примеру, для токарно-винторезных или сверлильных станков) допустимо применение бетонного основания без армирования.

Рамные основания могут быть:

  • Монолитно-железобетонными.
  • Сборными, из отдельных железобетонных блоков ( в том числе облегченных за счет полостей и отверстий).
  • Металлическими. Рама и стойки полностью выполняются из стали; железобетон остается лишь в основании, на которое опираются стойки.
  • Комбинированными. Типичное решение – стальная рама на железобетонных ригелях.

Расчеты

Полный расчет фундамента под оборудование выполняется профессионалами на основании большого количества данных:

  • Несущей способности грунта под основанием машины или станка;

При этом отечественные источники прямо указывают, что точный расчет с учетом всех воздействующих на поведение фундамента факторов невозможен: мы слишком мало знаем о поведении грунтов в условиях динамичных нагрузок.

Упрощенная инструкция по оценке необходимых параметров включает несколько пунктов:

  • Оценку статического давления на грунт. Впрочем, этот пункт редко становится камнем преткновения: в отличие от фундаментов зданий, основания промышленного оборудования давят на почву с усилием не более 0,6 кгс/см2 для бесподвальных конструкций и не более 1,5 кгс/см2 для подвальных.
  • Обеспечение равномерности осадки. Центр тяжести должен быть максимально близко к геометрическому центру конструкции; при этом, чем проще схема основания в плане – тем проще обеспечить равномерное давление на грунт.

Оценка динамического давления на грунт требует знания несложных формул и констант. На практике может применяться следующая формула:

  • Pср – среднее статическое давление на основание. Оно получается делением статической массы агрегата на площадь основания фундамента.

Нюанс: в случае, если массивная плита покоится на гравийной или щебеночной подушке, эффективная площадь опоры будет больше площади бетонной конструкции.

  • m – коэффициент условий работы. Он берется равным 0,8 – 1,0 для машин периодического действия (фрезерные и токарные станки, лесопилки) и 0,5 для агрегатов ударного действия (кузнечные молоты, гильотинные ножницы).
  • m1 – коэффициент, позволяющий оценить поведение грунта при длительных деформирующих динамических нагрузках. Для слабых водонасыщенных грунтов (песков, пластичных глин) он берется равным 0,7; для прочих грунтов – 1,0.
  • R – условное расчетное давление на основание. Этот параметр тоже зависит от типа грунта и берется в таблицах СНиП.

Для удобства читателя приведем несколько справочных значений несущей способности разных грунтов.

  • Насыпной грунт без уплотнения – 1,0 кгс/см2.
  • Насыпной грунт с уплотнением – 1,5 кгс/см2.
  • Твердая глина – 6,0 кгс/см2.
  • Суглинок, супесь – 3,5 кгс/см2.
  • Крупный песок – 6,0 кгс/см2.
  • Средний песок – 5,0 кгс/см2.
  • Мелкий песок – 4,0 кгс/см2.
  • Пыль – 2,0 кгс/см2.
  • Гравий с глиной – 4,0 кгс/см2.
  • Галька с глиной – 4,5 кгс/см2.

Давайте в качестве примера посчитаем необходимую площадь кузнечного пневматического молота М4127 (масса 2100 кг) на влажном песчаном грунте со средним размером зерна.

Фундаменты для ударных механизмов

На практике для механизмов ударного действия основная проблема – это вовсе не осадка фундамента в грунт. Куда более опасно разрушение самого фундамента под действием ударных нагрузок.

Какие решения могут применяться?

  • Виброизолированные конструкции на пружинах и резиновых демпферах уже упоминались.
  • Под шабот – основание наковальни кузнечного молота – часто укладываются щит из дубового бруса. Минимальная толщина дубовой прокладки – 100 миллиметров; однако щиты могут укладываться и в несколько слоев. Впрочем, для молотов с массой ударной части до тонны применимы и более дешевые породы древесины – сосна или лиственница.

Технология

Предположим, что нам предстоит своими руками подготовить основание для компрессора небольшой мощности.

  • Размечаем расположение агрегата. Его основание не должно быть связано с фундаментами стен или опорных колонн; минимальное расстояние от выступающих частей оборудования до колонн или стен – 1 метр.
  • Размечаем границы плиты основания. Важный момент: расстояние от ее краев до осей фундаментных болтов в общем случае должно быть в пределах 120 – 200 мм.
  • Готовим котлован. Его глубина определяется глубиной промерзания; впрочем, в отапливаемом цеху проблема может и не быть актуальной.
  • Засыпаем котлован слоем песка или щебня и уплотняем его. Толщина подсыпки – 100 – 150 мм.
  • Собираем опалубку и укладываем в нее армирующую сетку. На опалубку укладывается шаблон, через отверстия в котором снизу заводятся и фиксируются гайками фундаментные болты.
  • Опалубка заливается бетоном слоями в 100-150 мм с обязательной виброукладкой или штыкованием каждого слоя.
  • Акт готовности фундамента к установке оборудования подписывается лишь после набора бетоном прочности в течение 28 дней, ревизии и прочностных испытаний.

Вывод

Если для тяжелого промышленного оборудования необходимы сложные расчеты и услуги специалистов, то фундаменты под оборудование малой мощности могут изготавливаться со сравнительно небольшими затратами времени и материалов. В представленном видео в этой статье вы найдете дополнительную информацию по данной теме. Успехов в строительстве!

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: